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Phase spaces for quantum elementary systems in anti-de 
Sitter and Minkowski spacetimes 

Roberto Balbinott, Amine M El Gradechit, Jean-Pierre Gazeau and 
Bruno Giorginit 
Labratoire de Physique ThCorique eI MathCmatique§, UniversilC Paris VII, B u r  Cen- 
Irale, %me Ctage. 2 place Jussieu F-75251 Paris G d a  05, France 
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AbstmcL In this paper we give a phase space description of a massive, spin s, quantum 
elementary system on the anti-de Sitter spacetime. The latter is associated with a diScrete 
seris representalion of h e  kinematical p u p  SOo(3,Z) 2 Sp(4,R)/&, taken in its 
Fmk-Bargmann r a l h t i o n .  When the zero Nwature limit (contraction) is carried out, 
we oblain a bincar6 quantum elementay q s k m  in i s  momentum representation (i.e. 
the usual Wigner representation), a1 the expense of imposing a polarization condition. 
This polarization appears as a consequence of the contraction procedure. and it is 
imposed in order 10 avoid the apparance of singular terms in the contracled generalon. 

1. Introduction 

Tln-. Fa.., h . - A n - n - m l  -hw&,--l m . r r m m t r  qia ..lt:-nral.. ID.-PGCII-I tm A n n 1  . I t h  n 
.'.J L b n  I Y I L " " . I I L . . . I ~ I  p J Y . U . .  L V L L I L " . I W  Y.' Y.L.Bl.YL'1J L1Y-WU.J L" Yl", "ll.. Y 

massive quantum elementary system at the kinematical level: a mass scale, say m, 
the fundamental speed c, the elementary action h, and finally a length scale, that will 
be denoted K - ~  consistently with the spirit of the present paper. These are necessary 
and sufficient to build up the dimensionless quantity, 

AK E =  - 
m c  

proper to the system. They also enable us to travel from one physics to another 
one through contraction/deformation procedures. Namely [l], c for connecting Ein- 
steinian and Galilean physics, m for connecting mobile and static physics, K for 
connecting (anti-) de Sitterian and Einsteinian physics, and h for connecting quantum 
and classical physics. The three first ones are contraction/deformation parameters in 
a group theoretical context [Z, 31, whereas the last one is a deformation parameter 
starting from the symplectic structure of classical mechanics [4]. 

Figure 1 is extracted from the Bacly and Evy-Leblond paper [l] where eleve'n 
possible kinematics were originally listed. We have selected the seven kinematics 
that appear to have a reasonable physical content. WO of them are of merimal 

t Permanent address: Dipanimenlo di Rsien. UnivenilA di Bologna and  INFN Sezione di Bologna. 
t Doctorant, Bourse Franco-AlgCrienne. 
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Plgum 1. Contranion-deformation relationships between four-dimensional spacetime 
relativities. ?he related kinematical groups are respectively the WO de Siltenan groups 
svOj4,ij and sooj3,2j. the (proper onhochronausj Poincari group ~ J j j , i j ,  tine 
WO Newton groups N+, the Galileo group G and finally the slalic group S. At each 
step of a contraction (de Sitter Y static) some of the original ten dimensionless group 
parameten aquire a physical dimension, e.g. k m m e  length-like, lime-& or mommfum- 
&e. Correspondingly a pan of thc simple Stmucture of the original group breaks down 
into a semidirect product Stmcture. 

symmetry, Le. their kinematical groups are the anti-de Sitterian pseudo-orthogonal 
groups S0,(4,1) and S 0 , ( 3 , 2 )  and no physical unit is necessary tostandardize their 
ten (pseudo-) angular parameters. They are departures for successive contractions 
until reaching the ultimate ldnemafics where nothing moves. At each step, some of 
the parameters acquire a physical dimension. They may become length-like, fime-like 
or momentum-like. Correspondingly the simple-group structure breaks down into a 

Quantum elementary systems are associated with (projective) unitary, irreducible 
representations (UIR) of the (possibly extendcdj kinematic group (or one of its cov- 
ering). Wigner originated this point of view in his famous 1939 paper [5] where an 
(Einsteinian) elementary system of mass m and spin s is shown to be identified with 
the representation 'P(m,sj  of the PoincarC group 'P i (3 , l ) .  He was followed by 
Inonii (61, Uvy-Leblond [7] and Voisin [SI who applied the Wigner ideas to Galilean 
systems, and by Giirsey [9] and Fronsdal [lo] who extended them to de Sitterian and 
anti-de Sitterian systems respectively. 

The contraction procedure depends on the physical surroundings. Separate physi- 
cal quantities may become singular while some of their combinations acquire a definite 

..,....: ,a:-...,. _ I n  
JCLLLL-UIICCL ",IC. 
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physical meaning in the new paradigm. The way we calculate the limit is also strongly 
dependent on the mathematical framework. These manipulations are relatively trivial 
when finite geometry or purely algebraic objects are involved. They may present seri- 
ous difficulties in a functional-analysis and group-representation context [ll]. Fbr the 
specific passage (anti-) de Sitter-Poincar.6 we know the following scheme concerning 
the relationships between massive representations, 

P' and P< are respectively the positive-energy and the negative-energy Wigner 
representations. D-( E,,s) is a principalseries representation of SOo(4,1) charac- 
terized by a spin s and a parameter Eo associated with the unitary character of the 
non-compact time-translation subgroup SO,( 1, l)  (see figure 2(a)). D>( E,, s) and 
Do<( -Eo, s)  are respectively minimal-weight and maximal-weight representations of 
S0 , (3 ,2)  that belong to the discrete series for Eo > s + 2. E, is the positive lower 
bound of the discrete spectrum of the compact time-translation generator correspond- 
ing to a subgroup SO(2) (see figure 2(b)). Contractions in (1.2) are performed by 
keeping the product EoE equal to one. It is clear from (1.2) that the S00(4,  1) rela- 
tivity ignores the sign of the energy whereas the SOO(3,2)  relativity and its Poincar.6 
limit distinguish it. This is the first reason why we favour the anti-de Sitter kinemat- 
ics, even though there exists [12] a sort of selection NIC, based on the existence of 
a causalify semi-group in SOo(4, l), that allows one to extract from 'D-(E0,s) only 
what contracts onto P > ( m , s ) .  Our second motimtion rests upon the opportunity of 
exploiting very rich analytic structures that appear in the S 0 0 ( 3 , 2 )  geometry. The 
phase space which is, for a given relativity, the homogeneous space 

Kinemafical GrouplSpace Rofafions x Time Panslations 

is in this precise case SO0(3 ,2 ) /SO(3)xS0(2 ) ,  i.e. a classical domain in the Cartan 
terminology (131. The existence of a discrete series of representations jointly to that 
of an analytic (Fock-Bargmann) carrier space [14] deserves a careful investigation. A 
part of this programme consists in studying what persists and what disappears among 
those analytic structures after contraction onto the Poincare group and this is the 
content of the present paper. 

It seems a general trend of contemporary physics to deal with phase space rather 
than with spacetime as a natural arena for describing physical processes. The rea- 
son is clear in classical mechanics and in statistical physics since points in the phase 
space of a system immediately represent its physical states. Quantization is naturally 
and historically based on the phase space Hamiltonian formalism, although physicists 
are still looking for or making proposals [IS] for non-equivocal criteria for defining 
quantum observables from their classical counterparts. Dificulties mainly arise in the 
spacetime formulation of the Poincare case: localizability is in conflict with causality 
and some inconsistencies arise in theories for high-spin interacting systems [16]. They 
might be eluded in S00(3,2)quantum mechanics by exploiting at once the regular- 
ization due to the curvature and the Fock-Bargmann analytic structure. The latter 
emerges from a Uhlerian phase space associated to any massive elementary system. 
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(a) 

0 

I . .  

0 Eo Eo+lEo+2 EO +n 

Figure 1 (0) Specl” of the SOo(1 , l )  time-translation generator in the V _ ( E o , a )  
representation of SOo(4, 1).  @) Spectcum of the SO(2) time-translation generator in 
the V ? ( E O , J )  representation of S 0 0 ( 3 , 2 ) .  

Then a quantum theory on phase space 1161 with nice attributes like localization can 
be developed without any use of intricate spacerime ti phase space mansformation 
(such as Weyl transformation). Curiously enough one recovers the Same features as 
those exisring for the -weyi-Heisenberg group where an eiementaly system, nameiy 
the harmonic ascillator, has the complex plane as phase space. Setting in a compre- 
hensive and consistent way a quantum mechanics on the S00(3,?)-phase space for 
free and interacting systems and examining the contraction limits of the theory is our 
eventual goal [17, 181. 

We begin (section 2) by a short presenta- 
tion of the group S 0 0 ( 3 , ? )  as acting on the ant ide Sitter spacetime. The lan- 
guage of complex quaternions appeared to us as the most adapted for describ- 
ing the special isomorphism S 0 0 ( 3 , ? )  E Sp(4,R)/Z2, and the classical domain 
’D(3) E S O o ( 3 , 2 ) / S 0 ( 3 )  x SO(2) (section 3). In section 4, we make explicit the 
Fock-Bargmann Hilbert space of analytic functions on D(3) and the corresponding 
discrete-series representation. The contraction procedure is then carried out at the 
fi-te=&i%ensiosr! !eve! (section 5) ,  Le. at !he !eve! of th.e specetime, grey and phese 
space. It is finally achieved in section 6 a t  the level of the generators of the Fock- 
Bargmann representation: we show how to recover the Wigner representation at the 
cost of losing the original analyticity and square-integrability properties @olarizarion 
conditions). All this is performed in a heuristic way, and we refer to 117, 181 for 
mathematical precisions. In (181 geometric quantization of the classical Ghlerian 
s!ru~!ure has &.en w ~ r k e d  out i!! a comprehemive manner and a!!ows one to m!ve 
the two problems emerging from the present approach. In [lS], the non-natural 
rescaling used here in equation (6.8) and the singular terms appearing in the con- 
traction limit of the S 0 0 ( 3 , 2 )  infinitesimal generators of the halomorphic UIR (6.7), 
are avoided by performing the contraction at the prequantized level. However the 
contraction at the quantum level as it is carried out in the present paper is an illustra- 
tion of a non-immediate link between the notion of polarization and the contraction 
of representations. This is clearly established since the singular part of the con- 
tracted generators are just the Poincark polarization corresponding to the holomorpic 
polarization of SOO(3,2) .  

Previous work on the anti-de Sitter-Poincark contraction procedure for the two- 
dimensional case can be found in (191. 

The organization is as follows. 
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2. Quaternionic mlimtion of the nuti-de Sitter kinematical group 

Antide Sitter spacetime B characterized by a constant curvature n > 0. It can be 
vizualized as the unit pseudo-sphere in R2t3, 

(2.1) y2 E CaOymyp e y," + yo 2 2 2  - y, - y2 - y: = IC-' 

where bap = diag(+l,+l,-l,-l,-l) and the indices  CY,^,... run on the MI- 
ues {5,0,1,2,3). We shall reserve the Minkowski indices p ,  U,. . . to the subset 
{O, 1,2,3) and the spatial indices i, j, . . . to the subset { 1,2,3)t. 

The one-sheeted hyperboloid (21) can be given global coordinates {x"] which 
are tensorial with respect to the Minkowski metric 6," = diag(+l,-1,-l ,- l) ,  

ys = Y C O S  K X o  

yo = Y sin nz, 
yi = xi 

where 

Y = (K2 i- z2)1'2 zi E R 

We refer to Fronsdal 1101 for the ' 

and - 71 Q nx, < A.  

(2.2a) 

(2.26) 

IS geometrical and physical ,operties of (2.1). 
Let us denote by'X&O the infinitesimal generator associated iith the (pseudo) 

rotation in the (a,@) plane. In terms of the 5 x 5 matrix representation of S 0 0 ( 3 , 2 )  
they are given by 

They satisfy the commutation rules 

two equal indices 
all indices are different. 

(2.36) 

In order to display the homomorphism between 5 0 , ( 3 , 2 )  and S p ( 4 , R )  (131, we 
associate to any 5-uple (y") in R2+, the following 4 x 4 matrix with complex entries, 

V Y )  = Y a r a  (2.4a) 

where the five matrices re are given by 

r5 = 1, 

t missing m d u  value 4 is Laken apan in view of quatemionic use. See later. 

(2.46) 
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where the uis are the usual Pauli matrices. Hence the general expression of I-( y)  is 

(2.5a) 

where 

y+ = ys iy, and  iy' - y2 ) . (2.56) 

We note that det  r ( y )  =yeye .  
Exploiting the well known isomorphism between the algebra M,(C) of 2 x 2 

complex matrices and that one of complex quaternions, r ( y )  can be written as a 
2 x 2 complex quaternionic matrix. Actually this isomorphism associates with Y in 
(2.5b), the complex pure-vector quaternion y and to, respectively, (y+)12 and (y- )12  
in (2.5a), the complex scalar quaternions yt and y-; this yields 

c,e~era! fact. about mmp!pX n,lsierfiion. ZTe oflt!ined 1171 A rnmn~pv 
L - ' , '  ._ 

quaternion z is the scalar-vector pair ( z4, z), defined by 

z = ( z  4 , z) E z4 + zlel + z2e2 + z3e3 (2.7a) 

where ( zl, z2, z 3 ,  z4) E C" and {e1, e2, e3}  satisfy the quaternionic algebra 

(2.76) 
eie j  = ek  for ( i j k )  an even permutation of (123). 

In the following we shall sometimes designate z4 by ( z ) ~  (s for scalar), and we shall 
also make use of the decomposition of z into real and imaginary parts (which are 
real quaternions) ie. z = x + iy. The complex conjugate, the quatemionic conjugate 
and the adjoint of z are respectiveiy defined through 

~ 

f = (I4,,%) i = (z4,-+) and z ' = i = %  ( 2 . 8 ~ )  

or equivalently 

(2.86) . _  f = x - i y  i = % + i y  and z * = % - l y .  

The product of two complex quaternions is 

zz' = (z4,z)(zf4,  z') = ( z 4 d 4  - z . z', 2'2' + 2142 + z x z') (2.9) 

where z . I' and z x I' are the analytic continuations of respectively the dot product 
o n A  thn - n ~  nrnrl..r+ :n D3 T h o  Aolnnninnnr  nf 3 mmnlor nisnlom;nn 7 rlefinerl 
",,U ",U U,".,., p " u Y L A  "1 n, . 1.1- "C.CI,,.I,.U,I. "L Y W . . l p ' A  'IY"L'...1".. ,. ".-.L..-." 

hY 

det z = det  i = 2.5 = t z  = (2') + ( z 2 )  + ( z 3 )  + ( z 4 )  = 1 1 ~ 1 1 ~  - llyl12 + 2ix ' Y  
(2.10a) 

2 2 2 2 
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where 1 1 ~ 1 1 ~  = I. z and '.' is the Euclidian dot product in R4. It is equal to det 2, 
where 2 k the M 2 ( C )  counterpart of z:  

z4 + iz3 i d  - z2 (2.10b) 

From (210) one derives the expression of the inverse z-l of z, which exists whenever 
det z is not zero, 

- 
(2.11) 

z 
z-l = __. 

det z 

In terms of complex quaternionic algebra, elements of S p ( 4 ,  R)  are 2 x 2 complex 
quaternionic matrices of the form [13, U)] ,  

such that the inverse g-' of g is given by 

(212a) 

This means that the complex quaternionic entries have to obey, 

aa* - bb' = 1 and ab = -bii (2.13a) 

or equivalently 
-_ - 

a*a  - bb = 1 and a'b = -ba. (2.136) 

S p ( 4 , R )  acts on the matrices r ( y )  in the following way, 

s ~ ( ~ , R )  3 9 :  r i d  - r(Y') = gr(Y)ijt (2.14) 

or more explicitly as 

y; = y+ det a + y- det b + 2 ( a ~ b ) ,  

y '  = - y + a b ' +  y-ba' + aya' + b b ' .  

( 2 1 5 ~ )  

(2.1Sb) 

Thus the homomorpbim S p ( 4 , R )  i S 0 0 ( 3 , 2 )  is easily deduced from the above 

S p ( 4 . R )  3 g - R, E S 0 0 ( 3 , 2 )  

g r (Y ) i j t  = r w )  = r(i$,Y). 
(2.16a) 

(2.166) 

The matrix R, is realized as the 5 x 5 block matrix, 

(5  0 )  (1 2 3) 

(2 .17~)  
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where the blocks are given by 

(217b) 

(2.17~) 

Here the reai pure-vector quaternions m ana n (resp. m! ana nij are tine reai ana 
the imaginary parts of the complex pure vector quaternion 2 6 b  (resp. 26a'). The 
columns of the 3 x 3 matrix D are made up with the components of three real 
pure-vectors, 

D = ( P ( ~ ) , P ( ~ ) , P ( , ) )  with P( , )  = + be$*. (2.17d) 

'RI summarize, we rewrite Rg in the more compact form: 

Re(det a + det b) 
Im(det a + det b) 

-Im(det a - det b) 
Re(det a - det b) A =  ( 

B =  ($ :: $) C' = ($ ;,: T;:) . 

(2.18) 

YIJ)e.re. the 
quaternions m, n, m', n' and p ( ; )  have to be written as column vectors in R2 and R3 
respectively. Note also the relationships between the R, blocks due to the invariance 
of the metric in RZf3, 

mmpjer nfimbers y* E #jet "_ * &t 6 and th.e x.ven rea! pre-vertor 

(2.19a) 

A'A - C'C = l,, D'D - BtB = 1, and  A ~ B  = C ~ D  (2.196) 

0 
R k A 2 , 3 R g  = AZ,3 A2,3 = (2 -1,) 

or equivalently, 

AA' - BEt = 1, DD' - CC' = 1, and AC' = BD'. (2.19~) 

3. A classical domain as anti-de Sitterian phase space 

As any simple Lie group, Sp(4 ,R)  admits a Cartan factorization [21], 

Sp(4 ,R)  = Pli e j  Sp(4 ,R)  3 g = p k  (3.1) 

where li = S(U(2) x U(1)) is the maximal compact subgroup, 

(3.2) 

a reai quaternion of moauius i ,  i.e. an eiemenr of SU(2). The Caitaii witn 
factorization (3.1) is associated with the existence of the involution [21], 

g c "(9) = [(st))']-' = (; ;b) (3.3a) 
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such that 

a(k) = k and o(p) = p - ' .  

'This implies 

p = (gg+)'/Z. 

(3.3b) 

(3.4) 

Using the fact that any quaternion a can be written in the polar form 

a = (aa*)' / 'u uu' = u*u = 1 (3.5) 

we perform the above-mentioned factorization for the quaternionic representation of 
Sp(4,R) presented in (2.12), thus 

From (2.136) we obtain (a  being always invertible as a consequence of (2.13a) ie. 
det a # 0 )  

(3.7) 

where b6-' is easily seen to be a pure-vector quaternion and therefore it will be 
denoted 

r z b a - ' .  (3.8) 

Using (3.6), (3.7) and (3.8), the factor p in (3.1) takes the following +dependent 
form, 

(1 + zz ) - ' / '  z(l + z+)-1/2 
(1 +zz) - ' /Z  P(+) = -z(l + z f ) - ' / 2  (3.9) 

Actually, z is confined to lie in a bounded domain of C?, indeed 

(I + z ~ )  =(a .*) - '  > o (3.10a) 

ie. the M , ( C )  counterpart Z of z obeys 

1, - zz+ > 0.  (3.10b) 

This means that the spectral radius or the largest eigenvalue of the Hermitian matrix 
ZZ+ is smaller than 1, and this can be formulated as follows 

11z11~ + llz x Zll < 1 .  (3.10~) 

The domain d3) of C? described by (3.10a) is an irreducible bounded symmetric her- 
mifian domain or a classical domain [13, 22, U]. Its Shilov boundary is diffeomorphic 
to S' x z 2  S 2 ,  where x z o  is the Cartesian product modulo a 51-factor. 
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The S0, (3 ,2 )  counterpart of the factorization (3.1) is easily found using the 
homomorphism (2.16). Thus, the 5 x 5 real matrix x which corresponds to k reads 
in the formulation (218) 

(3.11) 

where 0 and { are those introduced in (3.2). We easily recognize the anti-de Sitterian- 
time translation subgroup SO(2) and the 3space rotation subgroup SO(3) associated 
respectively to the parameter f3 and to the S U ( 2 )  quaternion [. Along the Same way, 
the 5 x 5 real matrix II which corresponds to p reads in the formulation (2.17a) 

where the 2 x 3 matrix X is given, according to the notation in (2.17~) and (2.18). 
.by 

x = ( p l  oil a 2  p2 a3 p3)=(1") C + t  C - t  

with 

(3.12b) 

(3 .12~)  

Note that IIt = II whereas xt = x-l; these are the S0,(3,2)  counterparts of (3.3b), 
where the Cartan involution takes the form U( R) = ( RL)-'. Also, the square roots 
that appear in (3.12~1) are a simple consequence of (2,196) and (2 .19~)  when A and 
D are symmetrical and C = B'. The latter properties are clearly put in evidence 
from (2.176), (2 .17~)  and (2.17d) when a and b are those of (3.9). Actually, A and 
D are 

1 + R e d e t  x Imm det I 

1 - Redet  x 
[de t ( l  + [det(l  + 2E)1"2 

[de t ( l  + x . ? ) ] ~ ' ~  ' [de t ( l  + Zz)]1/2 

A =  ( Imm det  x (3.13a) 

Here 6 = (1 + and the property 

z (1  + z x p  = (1 + x z ) - %  (3 .13~)  

has k e n  used in a systematic way in the computations. Inverting (3 .12~)  yields 
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Clearly C may run throughout the whole space C?, whereas z is confined to lie in 

The two coset spaces S p ( 4 , R ) / S ( U ( 2 )  x U ( 1 ) )  and SO0(3 ,2 ) /SO(3 )  x s o ( 2 )  
are homogeneous spaces for the left action of S p ( 4 , R )  and S0, (3 ,2 )  respectively. 
We define the transformations of 

v(3). 

and C? through the decompositions, 

S P ( 4 , R )  3 9 : P ( % )  - g p ( r )  = P ( g  ' z ) k  (3.15a) 
S 0 , ( 3 , 2 ) 3  R : I I ( X ) H R I I ( X ) =  I I ( R . X ) X .  (3.15b) 

The result is for the first one a generalized homographic action, namely 

(3.16a) 
(?.?h6) 

We end this section by displaying some properties of the classical domain 'D(3). 'D(3) 
is Uhlerian [13, 22, U] and it has G-invariant metric and G-invariant 2-form with 
respect to the analytic diffeomorphism (3.16). Both arise from the Kahlerian potential 
In K ( I , % ) ,  where K ( z , i )  is the Bergman kernel 

K ( z ,  i )  = - [det(l  + 

The coefficient V is the Euclidian volume in D(3) 

(3.17) 
1 
V 

(3.18) 

where i = d32d3y and I = z + iy. Therefore the Bergman kernel yields the 
Riemannian metric hi; on d3), given by 

Here, the barred indices correspond to the complex conjugate variables (2' 3 f i )  as 
usual and the minus sign is necessary since the spatial part hij of the anti-de Sitterian 
metric is negative. The Bergman kernel also yields the closed 2-form 

1 
w = --hi;dz' Adz' (3.20) 

2 

with dw = 0. Because its symplectic structure, will be called phase space for the 
double covering S p ( 4 , R )  of the kinematical group S 0 0 ( 3 , 2 )  of anti-de Sitter space. 
Finally, we give the explicit form of the invariant measure on 'D(3) with respect to 
(3.16): 

1 
V 

d p ( z )  = - [de t ( l  + I Z ) ] - ~  2 .  (3.21) 
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4. Fock-Bargmann Hilbert space and discrete series representations of Sp(4,R) 

We come now to the description of the discrete series representations of Sp(4,R) 
(actually of its universal covering Sp(4,R)).  Let us first describe the representation 
space. We denote by F(EO+) the space of holomorphic (2s  + 1)-vector functions 

793) 3 x H f (2)  E CZS+l (4.1) 

that are square integrable with respect to the bilinear form 

- \ . E . l r - 3 .  
x f 2 ( x ) j d e t ( i + x r j ~ - - ' -  x .  (4.2) 

Dd denotes here the irreducible (2s+ 1) x (2s+  1)-matrix representation of SU(2) ,  
holomorphically extended to M,(C). The constant N( E o , s )  is chosen in such a way 
that the particular function f(z) = ( f ( ~ ) ) ~ - . < ~ < ~  defined by 

(f(x)\ = 6 (4.3) 
' 1 s  'Y 

have norm one. Explicitly, 

N(Eo,s) = ( :)3 ( E ,  + s - g) (Eo - s - 1)( E,  - s - 2 ) .  (4.4) 

Therefore, the Hilbert space F(Eo+) is non-trivial if and only if E, > s + 2. Modi- 
fications of the form are required in order to relax this condition until reaching the 
unitarity lowest limits [24]: 

E , = s + l  s > l  massless 

E, = 112 s = 0 singleton Rac. 
E, = 1 s = 112 singleton Di (4.5) 

Here the correct definition of the scalar product involves the lower dimensional 
manifold S2 embedded in the Shilov boundaly S' x S2  (See for instance Onofri 
[U] for a definition of F ( E ~ + = O )  when < Eo 6 2). The positive parameter E, is 
considered as a minimal energy for reasons that will soon appear. ...~ * ~ ' ~ .  _ L ~  ~_^..^.__"7fE" "1, ~\ we w w  uenne me represenmuon opciaiur 1 '-"'-' \g )>  

(T(E",")(g)f)(z) = [det(-&+ i i ) ] - E O - s  Dd(xb'  + a')f(g-'  . x )  (4.6) 

for f E F.(Eo+) and 

The representatives of the Lie algebra elements are then given by the unitary opera- 
tors 

L,8 = Mao + Sa@ (4.7a) 
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where MYp is the orbital part and Sup is the spin part. They satisfy the following 
mmmutation NICS, 

[Le@? L,,I = i(6,,Lpp + 6@pL,, - 6,,Lpr - 6P7L*,). (4.7b) 

Explicitly, we obtain for the orbital part 

(4.8d) 

The spin parts are given in the appendix. It can be checked that the second-order 
Casimir operator 

c2 = + L , ~  L - P  (4.9a) 

takes on the value 

C2 = [Eo(& - 3) + S ( S  + 1)IId (4.96) 

identically on F(EO+). Moreover, L,, = M5, is the ladder operator or anti-de Sit- 
terian energy operator whose eigenvalues on the representation space F(Eo+) are 
E,, Eo + 1 , .  . . ,Eo + n,. . . . We are here in presence of lowest-weight representa- 
tions. The lowest-weight state f o ( r )  is defined by (4.3). 

The Fock-Bargmann spaces F(Eo+) are reproducing-kernel spaces. The (2s + 
1) x (2s + 1) matrix-valued reproducing-kernel is given by 

K ( z , z ' )  = [det(l  + Z Z ' ) ] - ~ " - "  P ( 1  + 22). (4.10) 

We recall its reproducing property 

f(') = .)?f)(E,,,). (4.1 1) 

An expansion of K allows one to find an orthonormal basis for F(Eo3').  

5. .4nti.de Sitter-Poincah eontraction: geometrical aspects 

In antide Sitterian physics, there exists an universal length, namely %-', to which any 
other :ei=,gih-;jke p h j y i ~ :  qnafi~ty tc & ax+xeb (e.g. $e&.! c=o;&fia:es, 
(z0,zi) in (2.2)). Nevertheless, as long as we deal with a non-zero curvature, all the 
parameters of the kinematical transformations of anti-de Sitter space are (pseudo-) 
angles associated with (pseudo-) rotations of the simple group S0 , (3 ,2 ) .  But if we. 
have in mind the flatland limit n + 0 or if we examine things from what we believe 
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to be our natural arena, namely the Minkowski space, some of those parameters 
are length-like. Actually, the four ones which are almost the components of a four- 
vector translation in Poincark kinematics are length-like. They correspond to the four 
S 0 , ( 3 , 2 )  generators X,, given in (2.3), and they are introduced after rescaling the 
corresponding dimensionless pseudo-angles 05’, 

(5.1) q” = n - 1 0 5 ’ .  

The remnant parameters do not need such a rescaling since they correspond to the 
unmodified Lorentz subgroup S0 , (3 ,1) .  

If we examine the behaviour at n z 0 of the y-coordinates (22) for the hyper- 
boloid (2.1), 

y, 5 n-‘ 

Yo = 2 0  + o(n) 
y; = I; 

(5.2) 

(5.3) 
(5.4) 

we see clearly how to rescale an arbitrary S00(3,2)-action in order to give it a 
physical meaning at the limit IC i 0. Since only the first component (5.2) becomes 
singular, this rescaling corresponds to the similitude matrix [2]: 

RE S 0 0 ( 3 , 2 )  - A(K)RA-’(K) 

A ( & ) = ( “  0 14 ’ ) .  
2)element near the identity can be factorized as lllows: 

where f is an element of the orthochronous Lorentz subgroup S0 , (3 ,1 ) ,  

f =  (i 1) A E S0, (3 ,1) .  

(5.5) 

(5.6) 

(5.7) 

The latter is left-invariant under (5.5) whereas the (5 - p )  pseudo-rotation becomes 
in the limit 

[A(n)  [exp05,,X5,,] A-‘(n)]- -+ 6-O + 65p6,”q,. (5.9) 

The final result on R is the five-dimensional matrix representation of the Poincart 
P U P  

1 0  
A )  (5.10) 
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We now turn to the zero-cuwature limit of the anti-de Sitter phase space 
S O o ( 3 , 2 ) / s O ( 3 )  X SO(2) .  Because we have in mind a Poincare phase space 
parametrized by pairs ( q , p )  we adopt the four-momentum description for a Lorentz 
boost with velocity U: 

T (5. i i j  \ (" - 
mc m. c 

PP' ) 
Lp = \ 5 13 + m c ( p o  + m c )  

P' 

where pip, = - v / c ,  and the four-vector p = ( p , , p )  belongs to the forward mass 
hyperboloid, 

V i  = { p  = ( P , , P )  E R4, p ,  > 0, p " p ,  = m2c2}.  (5.12) 

Then we examine the contraction limit for the rescaled section matrix n ( X )  given 
by equations (3.12) and (5.5). It is quite convenient to make explicit its dependence 
on the real 3-vectors a and 0 (see (3.12)): 

/ o = + L l  U \ 

where the scalar functions p ,  v, p are defined by 

f i (%P)  = lial12 - 11P1I2 
v(a,P) = 2 a . p  

(5.14a) 
(5.14b) 

112 ' 1 2  ] p(a70) = [z + lla1I2 + 11/3112 + 2 (1 + lla112 + 110112 + IIa x PII) (5.14~) 

Since the limit of A ( K ) ~ ( X ) A - ' ( K )  when K -3 0 has the form (5.10), the real part 
a of { = a + i o  must have the asymptotic behaviour 

C l =  K Q + O ( K 2 ) .  (5.15) 

On the other hand 0 has no reason to'vanish at the flat-space limit. Therefore we 
Put 

. 

(5.16) 

i e .  we define the parameter plmc as the zeroth-order term of the expansion of p in 
powers of K .  It follows for the rescaled matrix A ( K ) I I ( X ) A - * ( K )  the limit matrix 
at K = 0: 

(5.17) 
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Here, we have adopted the notations of [19] to designate the bundle section: 

p, : r, P:(~,I)/so(~) x T + pS(3 , i )  (5.18) 

where T Y R is the subgroup of time Uanslations. Therefore, the contraction onto 
the PoincarB group selects a rather remarkable section for the PoincarB phase space, 

Poincartl(Spatia1 Rolalions) x (Tme Translations). (5.1Y) 

Note that (5.19) is literally the phase space for massive scalar elementary systems, 
whereas non-zero-spin systems have phase space, 

P:(3,1)/S0(2) x T (5.20) 

which is just the product of r, with the coset S 0 ( 3 ) / S 0 ( 2 )  Z S2. For our present 
purpose we need not deal with (5.20). The constraint on the (qo,q,p) variables, 

9 ' P  
'0 = p o  + mc 

(5.21) 

has very interesting physical implications, previously discussed in [19] and [%I. Let 
us quote here two of them picked among a set of characteristic ones. First, p, is the 
unique section that obeys the equation, 

[Pa(9,P)l-' = P.(-9.-P). (5.22) 

Secondly, such a section is valid as well for the right coset 

rr = S O ( 3 )  x T 1 P i ( 3 , l ) .  (5.23) 

The left and right cosets have the same invariant measure 

(5.24) 

One could say that (5.22) and (5.24) are vestiges of a lost paradise: the classical 
and its mhlerian attributes. Property (5.22) also exists for the anti- 

(5.25) 
. . n : s o 0 ( 3 , 2 ) / s o ( 3 )  x so(q -+ soo(3,z) (5.26) 

domain 
de Sitterian-Cartan sections (3.9) and (3.12), 

P : S P ( ~ , R ) / S ( U ( ' ~  x U(1)) - S p ( 4 , R )  

namely 

(5.27) 

(5.28) 

Th ~ . n A a r r t n n A  thn nr:n:n nf I< ?A\ .ICP +hp I -  -1 fir~t-nrrlnr n9mmotr;vst;nn 
1" ".,"b,.,mn," L.Ib ""pl Y, (d.&7,, _I Y... \ y , p ,  LLnYL-"."". p'"....,L.UY'.".. 

of the coset (5.26) afforded by equations (5.15) and (5.16), or alternatively from 
equation (3.14), 

(5.29) 
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The fact that the imaginary part y has no first-order expansion term will be given an 
a posterion' justification in section 7. Note that it could be inferred from the global 
(9,p)aordinatization of 0@), 

[ m c  sinh(rcq) + i (e  .p)(cosh(nq) - l)] e+ip  

[(Po cosh(nq) + m c ) z  - ( 4 . ~ ) ~  ~ i n h ~ ( ~ q ) ] " ~  
+ =  

(5.30) 
- 9  

9 
q = - and q = ((qll 

in agreement with the S p ( 4 , R ) G r t a n  factorization and its Poincark limit. The 
infinitesimal transformation corresponding to equation (5.29) reads 

The leading term of the Jacobian is m 4 c 4 n 3 / p o ( p o  + m ~ ) ~ .  Other approximation 
formulae are useful: 

2 m c  . 2mcn 
1 + z z =  - 1  q x p + 0 ( 4  

Po + m c  (Po + 
4m2c2 

det (1  + + E )  = + O ( K z ) .  
( p 0  + mc)2 

It follows the leading term for the invariant volume element (3.21): 

The approximate mhlerian metric and 2-form are also interesting, 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

Let us say more about the invariance of the above three expressions under the 
Poincare action. An arbitrary clement (4, A )  E P I ( 3 , l )  may be factorized either as 

according to the left coset r ,  or as 

(5.37) 

(5.38) 
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according to rr. In the former case, A = LpR,,  RA E S 0 ( 3 ) ,  and 
4: ( n ‘ . p / ( p o  + m c ) , q ’ )  with 

In the latter case, qr is defined by 

q y = (  ‘I” , R i g )  
P o  + mc 

and p” = R i p .  Hence, the section (5.18) is valid for both r, and rr and elements of 
both cosets can be parametrized by ( q , p )  E R6 according to ps. me left and right 
actions of P : ( 3 , 1 )  on r, and rr, respectively, are similar. On r, the action is 

( 9 , P )  - (9’,P’) = ( a > A ) ( n > P )  (5.41) 

UJhere 

+ 
p’ = Ap. 

(5.42) 

(5.43) 

Here, the rotation Rk,k, appears in the Cartan decomposition of the product of two 
boosts. 

L,L,, = L - - , R k l k , .  (5.44) 
L.k 

On the other hand, the action of ’ P i ( 3 , l )  on r, is given by 

p” = SA-’Sp 

(5.46) 

(5.47) 

where S is the spatial inversion. The invariance of (5.24). (5.35) and (5.36) holds by 
reference to the above left and right actions. 

6. Anti-de Sitter-PoincarG contraction: operatorial aspects 

We now !urn t~ &e task of contracting the representation T(Eo,s)! given in (4.6), 
at the level of its infinitesimal generators (4.7) and (4.8). At this end, we begin by 
rescaling ri la Inonu-Wigner [2], the generators which are not Lorentz: 

- - - - 
L,,  E K L ~ ,  L S i  = ‘CL,; L . .  3 1  = - L . .  * J  . and LOi e L O i .  (6.1) 
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Formally, the new commutation NI= become the Poincark ones when K = a. How- 
ever things are not so simple, since a radical change can occur for the infinitesimal 
operators originally acting on the Bargmann-Hilbert space F(Eold) .  One should study 
carefully what happens, for the spaces of analytic functions and the operator domains, 
at the topological and functional analysis levels. Such a mathematical development 
is presented elsewhere [18]. Here we describe rather heuristically the contraction 
procedure in the spirit of !19]. and we deal with the scalar me on!y TBe non-zero 
spin case is considered in the appendix. 

Tiking into account the parametrization (5.30), the asymptotic behaviour ( I( - 0) 
of the differential operators V, and V, is the following: 

( 6 . 2 ~ )  

(6.2b) 

Before writing out the explicit form of the infinitesimal generators in the limit 
K -+ 0, we would like to add some comments. The representation parameter E,, is a 
pure number. The contraction procedure consists in taking the limits Ea - M and 
K + 0, while keeping the product "E,, finite and proportional to m, the rest mass of 
the limiting Poincark elementary system. However, the three (fundamental) constants 
K, m and c appearing in the formalism are not enough to build up pure numbers. We 
should be aware that the Fock-Bargmann-Hilbert spaces are dealt within a quantum 
context, characterized by action-dimensioned physical quantities of order R. Now, the 
unique dimensionless combination of these four constants is the parameter 

RK ( = -  
mc 

and the contraction condition K Ea a m can be replaced hy 

Eo = E - ' .  (6.4) 

Actually we might consider the quantum anti-de Sitter parameter E,, as a meromor- 
phic function of < with simple pole = 0, 

where the e , , e , ,  . . , , e , ,  . . . are pure numbers. So considering (6.2) and (6.5), we 
are led to the following asymptotic behaviour for the infinitesimal generators of (4.8): 

(6.6a) 

(6.6b) 
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a a 
2 aqJ J aq* i (.- - 9.  T + p i  (6.6~) 

(6.6d) 

In the limit [ = 0, singular terms a p p r  in the expression of the generators of the 
subgroup S0(3.1), namely zi, and MO;. We shall need a specific notation for them, 
whereas we adopt PoincarWke notations for the remnant terms, 

One should first note that the operator zi will be Hermitian only if e, = 0. On 
the other hand, the operators Po, Pi, 4 and zi ( i  = 1,2,3), exactly obey the usual 
Poincark commutation rules if we make the rescaling [19], 

l a  a and ----, 
l a  a 
2 apt apt 2 ap' apt -F +-+ - 

Such a seemingly artificial rescaling can be shown to be unnecessary if the contraction 
procedure is performed in more rigorous mathematical settings [18]; we shall come 
back to this point in section 7. Finally, by multiplying each one of the latter generators 
by h, one obtains the Poincark generators under their definitive form, 

Po=i-p.Vp+mc (6.9a) 
h 

m c  

(6.96) 

The remaining terms in (6.7~) and (6.7d) become infinite at the limit [ i 0. we 
remove these singularities by imposing on the space of functions on the ( q , p )  phase 
space, the following constraints: 

(6.10a) 
(6.10b) 
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where 

(6.1 l a )  

p . V , - m c  P i  (6.11 b) 
R a . R  p i  

mc aq mcpo+mc Po + mc 
I I i  = i-po7 -1- 

i3p3tiOnS (6.10) are typical polarization mnditions, usually encountred in geometric 
quantization [18, U]. For this reason, we shall call C and Il polarization operators. 

Besides the familiar Poincar6 commutation rules, we have those involving the 
polarization operators, 

[ C i , C j ]  = [n,,n,] = [C;,II,] = o  (6.12a) 

[E, P'1 = [n, PPI = 0 (6.126) 

[ J i , C j ]  = iReijkCk [ J ~ , I I , ]  = ihe i jknk  (6 .12~)  
( K i , C j ]  = ifieijkIIk [ ~ , , n , ]  = itieijkEk. (6.12d) 

and Il form a 16-dimensional Lie algebra Therefore the generators J ,  K, Po, P ,  
that & fhe scmin_irpa SEm. of q,!) 2nd 2 ?O&mensin..! .&&E .!g&.., 

{ J ,  K I G  {Po, P ,  E, n).  (6.13) 

This extended Poincad algebra has a second-order invariant (Casimir) operator, 
which is identically equal to m2c2, 

I z  = P'P' - II;II' + CiC' m2czId. (6.14) 

The functional space at 5 = 0 limit results from the polarization conditions (6.10); 
therefore, on this space, I, becomes the Poincark Casimir operator P,, P" and (6.14) 
becomes the Klein-Gordon equation, 

Ip  \ P  P' - " 2 " 2 ) Q ( g , p )  = 9 (6.15) 

for @ ( q , p )  given by (6.10). Actually the two conditions (6.10a) and (6.10b) reduce 
to one by noting that, 

( n @ ) ( q , p )  = 0 * ( Z @ ) ( % P )  = 0. (6.16) 

This is directly deduced from the explicit formulae of C i  and I I i  given in (6.11). 
One can see, by solving the polarization condition (6.106), that the carrier space 

of functions of the representation is no longer a subspace of L z  (R6, d3qd3p/po); 
in other words we lose the square integrability on the entire phase space, when 5 
reaches its limiting value 0. In fact, when solving (6.106) one obtains 

(6.17) 

where q, is the Cartan-anti-de Sitterian section (5.17). The energy and momentum 
operators, Po and P, are diagonal on the space of such functions (6.17). On the other 
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hand, the exponential factor in (6.17) is mansparent with respect to the Lorentz action. 
Thus the action of the Poincar6 operators (6.9) passes through this modulus-one factor 
to  become the well known infinitesimal Wigner-Poincar6 action on functions + ( p )  
defined on the mass-shell [SI; 

(6.18a) 
I, . O # ,  
(0.JOD) 

(6.18~) 

(6.18d) 

Thus the Wigner representation on Lz ( U & , d 3 p / p , )  is recovered by just imposing 
the functions + ( p )  of (6.17) be square integrable with respect to d 3 p / p , .  

I. Discussion 

In section 5 the first-order expansion of s = z + i y  E DC3) exhibits no first-order 
term in the asymptotic form of y (see (5.29)). That was justified from the global 
coordinatization of D(3) given in (5.30). Asymptotically, the latter provides exactly 
(5.29). Had we chosen another global parametrization of D(3) ,  which in its asymptotic 
form can be written in general as 

(7.1 a )  

(7.lb) 

where f is an arbitrary vector function analytic in q and p ,  the infinitesimal generators 

that their non-singular (and resaled) parts as in (6.7), (6.8) and (6.9), obey the usual 
Poincark commutation rules only if f = 0. So the parametrization must be such that 
no term linear in n appears in the asymptotic expansion of y. 

The procedure of contraction of the discrete series performed in this work presents 
some problems; these are essentially two: the non-natural rescaling used in (6.8) and 

interpretation of the latter as polarization operators draws one naturally, in order to 
explain the origin of the above-mentioned problems, to put the present work into the 
framework of geometric quantization. This has been done in [NI. mere ,  no such 
problems appear and an explanation to the present ones is given. Actually it is shown 
that they have the same origin. Singular terms appear naturally when one contracb 
the holomorphic part of the prequantized representation, since it carries implicitly 
a polarization condition, i.e. the holomorphic condition. Then those singular terms 
appear as the Poincark counterparts of the anti-de Sitterian holomorphic condition. 
In [18] the contraction is performed at the prequantized level, i.e. taking into account 
the holomorphic and the anti-holomorphic parts, that solves the problem of singular 
terms and that of the rescaling since no holomorphic condition is considered and 

IC C\ xxm. , lA nm.:rn nvtro +_-me : n . m l . r : n n  Z n-rl :+o Ao&m&ro- It :L. +ho- nor., I n  oh,..., 
["'U, """,U P'1""' 'AL.'. LC.LL.LI "1"Y"LL.b , 'U," LLO Ub.L.'xLl.'D. I, 0 "lrll uL"J ,U .XIUW 

!he singu!ar terms appearhg i!! the mntraaia!! of *e h!ini!esima! generat!% n.e 
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each part contributes by one half in the contracted generators. Then the construction 
is completed by adding to the resulting Poinark generators the IC - 0 limit of the 
anti-de Sitter polarization (the holomorphic condition), which is interpreted as the 
Poincard polarization. One thus obtains the Poincard quantum elementary system. 

Appendix 

In this appendix we give the complete form of equations (4.7) and ( 4 4 ,  (6.6), (6.9) 
and (6.18) by displaying their spin parts. We start by equations (4.7) and (4.8). For 
the calculations we make use essentially of equation (4.6). 

First let w introduce the (2s  + 1) x (2s + 1) matrices S,,S, and S, given 
respectively by 

for m and m’ integers such -s < m, m’ < s; they realize the spin s representation 
of the Lie algebra of SU(2) ,  Le. 

[s,,s,] = -ieijkSk i , j , k E  {1 ,2 ,3} .  (A.4) 

In terms of these matrices the complete generators of (4.7) are now displayed, 

a a a  
L,, = (z. V, + E,)  Id V, = (- ’ - ~ ~ 2 ’  -) ~ ~ 3 ,  

\ - “  
(A.5) 

(A.6u) 

(A.6b) 

(A.6c) 

z z (  E ,  + s + z. V,) Id - Z’S, + z3S, I + r . z  a _-  L,, = I 

L,, = 1 
+ I ”  a z3 (EO + s + Z. V,) Id + z1S, - rZS1 

(A.7b) 

(A.7c) 
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- + z'( E,  + s + z . V,) Id - iz2S3 + iz3s2 (A.8a) 
I - ~ . ~  a ( 2 azl Lo,  = - 

Lo, = - - + z2( E ,  + s + x . V,) Id + k'S3 - if3& (A.86) 

- + z3(E0 + s + z. V,) Id - iz'S2 + iz2Sl (A.8c) ) 
where Id is the (2s + 1 )  x (2s + 1) identity matrix. 

Since the spin contributions are linear in the components of x ,  no new singular 
terms will appear when carrying out the contraction. Thus the polarization operators 
are unchanged, they only become matrix-valued operators. This is a mere conse- 
quence of equation (5.29). Moreover, both L," and the Li;s are free from new 
;dependent terms, so their contraction is straightfonuard. Gore precisely, L,, has 
no spin part and thus its contraction will provide the same result as in section 6, 
namely equation (6.9a). For the Lijs the spin parts are just the (rc-independent) 
spin-s matrix representatives of the Lie algebra of SU(2).  The contraction will not 
affect these parts. The contracted rotation generators are then 

J i " ' = J i + h S i  i ~ { 1 , 2 , 3 }  (A.10) 

the Jis and the Sis being given respectively in (6 .9~)  and (kl-A.4) and they are the 

components of the 3-vecton J and S respcctively, with Ji = -Ji and Si = -Si. 
The contractions of the L,;s and Lois need simple calculations. We start by 

recallins from (5.29) the leading term in the expamion of I :  

i 

(A.11) 

- 
It is then easy to see that the leading term of E,; E nL,; is exactly that of M5i 
given in (6.66). The contracted generators are then exactly those found in (6.96). 
Finally for the Lois a direct calculation based on ( A l l )  and (A.8) gives the spin-s 
counterpart of (6.6d), 

( p 2 S 3  - p 3 S 2 )  + is " t o ( { )  (A.12a) 
Po + mc 

1 LO' = Eo, + 
Po + m c  

(p'Ss, -PIS,) + is p 2  to({) (A.126) 
1 

P ,  + m c  P o  + mc 
L o 2  = Go, + 

( p ' S ,  - p z S , )  + is P 3  to({) ( A . 1 2 ~ )  
Po + m c  

1 - - 
Lo3 = MO3 + 

+ mc 
- 

tne Mois being given in (6.6dj. Pjter contraction they become tne Poinark generators 
of boosts with spin s. In a more compact form, we have 

(A.13) 
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where the components of K are given in (6.9d). 
Since the polarization operators are unchanged when considering spin, the unique 

modification in (6.17) consists in replacing the scalar functions by (2s + 1)-vector 
valued functions, (see for instance equation (4.1)). Moreover, the spin counterparts 
of equations (6.18~-d) are easy to write down according to the latter observation and 
to the equations (A.10) and (A.13). We then obtain the Wigner representation of the 
Poincart group with arbitraty spin. 
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