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I Phys. A: Math, Gen. 25 (1992) 1185-1210. Printed in the UK

Phase spaces for quantum elementary systems in anti-de
Sitter and Minkowski spacetimes

Roberto Balbinotf, Amine M El Gradechij, Jean-Picrre Gazeau and
Bruno Giorginit

Laboratoire de Physique Théorique et Mathématique§, Université Paris VII, Tour Cen-
trale, 3éme étage, 2 place Jussieu F-75251 Paris Cédex (5, France

Abstract. In this paper we give a phase space description of a massive, spin s, quantum
elementary system on the anti-de Sitter spacetime. The latter is associated with a discrete
series representation of the kinematical group SOg(3,2) ~ Sp(4,R)/Z;, taken in its
Fock-Bargmann realization. When the zero curvature limit (contraction) is carried out,
we oblain a Poincaré quantum clomentary system in its momentum representation (ie.
the usual Wigner representation), at the expense of imposing a polarization condition.
This polarization appears as a consequence of the contraction procedure, and it is
imposed in order to avoid the appearance of singular terms in the contracted generators.

1. Introduction
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massive quantum elementary system at the kinematical level: a mass scale, say m,
the fundamental speed ¢, the elementary action £, and finally a length scale, that wili
be denoted ! consistently with the spirit of the present paper. These are necessary
and sufficient to build up the dimensionless quantity,

_fim

3 (1.1)

mc

proper to the system. They also enable us to travel from one physics to another
one through contraction/deformation procedures. Namely [1], ¢ for connecting Ein-
steinian and Galilean physics, m for connecting mobile and static physics, « for
connecting (anti-) de Sitterian and Einsteinian physics, and £ for connecting quantum
and classical physics. The three first ones are contraction/deformation parameters in
a group theoretical context [2, 3}, whereas the last one is a deformation parameter
starting from the symplectic structure of classical mechanics [4].

Figure 1 is extracted from the Bacry and Lévy-Leblond paper [1} where elevén
possible kinematics were originally listed. We have sclected the seven kinematics
that appear to have a reasonable physical content. Two of them are of maximal

t Permanent address: Dipartimento di Fisica, Universitd di Bologna and INFN Sezione di Bologna.

1 Doctorant, Bourse Franco-Algérienne.
§ Equipe de Recherche CNRS 177.

0305-4470/92/051185+26304.50 ©® 1992 10P Publishing Ltd 1185



1186 R Balbinot et al

de-Sitter
Anti-de Sitter
SO03,2}
K9
P(3,1
P(3,1) oo ¥
afjwtm & L 4 o0
: (central extension)
c—boo"
¢ =0
kawtan ”
K — 0 (central extcnsion#

(central extension)

(central extension)

Figure 1. Contraction—deformation relationships between four-dimensional spacetime
relativitics, The related kinematical groups are respectively the two de Smanan groups
504(4,1) and 30¢(3,2), the (proper orthochronous) Poincaré group P+(J i}, the
two Newton groups A4, the Galileo group ¢ and finally the static group S. At each
step of a contraction (de Sitter —— static) some of the original ten dimensionless group
parameters aquire a physical dimension, e.g. become length-like, tme-like or momentum-
like. Correspondingly a part of the simple structure of the original group breaks down
into a semi-direct product structure.

symmetry, ie. their kinematical groups are the anti-de Sitterian pseudo-orthogonal
groups SO,(4,1) and SO,(3,2) and no physical unit is necessary to standardize their
ten (pseudo-) angular parameters. They are departures for successive contractions
until reaching the ultimate kinematics where nothing moves. At each step, some of
the parameters acquire a physical dimension. They may become length-like, time-like
or momentum-like. Correspondingly the simple-group structure breaks down into a
semi-direct one.

Quantum elementary systems are associated with (projective) unitary, irreducible
representations (UIR) of the (possibly extended) kinematic group (or one of its cov-
ering). Wigner originated this point of view in his famous 1939 paper [5] where an
(Einsteinian) elementary system of mass m and spin s is shown to be identified with
the representation P(m,s) of the Poincar€ group P1(3,1). He was followed by
Inénii [6], Lévy-Leblond [7] and Voisin [8] who applied the Wigner ideas to Galilean
systems, and by Giirsey [9] and Fronsdal [10] who extended them to de Sitterian and
anti-de Sitterian systems respectively.

'The contraction procedure depends on the physical surroundings. Separate physi-
cal quantities may become singular while some of their combinations acquire a definite
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physical meaning in the new paradigm. The way we calculate the limit is also strongly
dependent on the mathematical framework. These manipulations are relatively trivial
when finite geometry or purely algebraic objects are involved. They may present seri-
ous difficulties in a functional-analysis and group-representation context [11]. For the
specific passage (anti-) de Sitter-Poincaré we know the following scheme concerning
the relationships between massive representations,

Eq—
P>(m,s) «—U—l—:-.; DI(Eg, s)
Ep—oc
D_(EpS) —s ® 1.2)
K—

P<(=m,s) f;—;i DS(=Ey, s).

P> and P< are respectively the positive-energy and the negative-energy Wigner
representations. D_(E;,s) is a principal-series representation of SO,(4,1) charac-
terized by a spin s and a parameter E, associated with the unitary character of the
non-compact time-translation subgroup SO,(1,1) (see figure 2(a)). P>(Ey, s) and
D<(—E,, s) are respectively minimal-weight and maximal-weight representations of
S0,(3,2) that belong to the discrete series for F, > s + 2. E, is the positive lower
bound of the discrete spectrum of the compact time-translation generator correspond-
ing to a subgroup SO(2) (see figure 2(b)). Contractions in (1.2) are performed by
keeping the product £ £ equal to one. It is clear from (1.2) that the SO,(4,1) rela-
tivity ignores the sign of the energy whereas the SQ04(3,2) relativity and its Poincaré
limit distinguish it. This is the first reason why we favour the anti-de Sitter kinemat-
ics, even though there exists [12] a sort of selection rule, based on the existence of
a causality semi-group in SO¢(4,1), that allows one to extract from D_( E,, s) only
what contracts onto P> (m, s). Our second motivation rests upon the opportunity of
exploiting very rich analytic structures that appear in the SO,(3,2) geometry. The
phase space which is, for a given relativity, the homogeneous space

Kinematical Group {Space Rotations x Time Translations

is in this precise case SO4(3,2)/S0(3)xSO(2), ie. a classical domain in the Cartan
terminology [13]. The existence of a discrete series of representations jointly to that
of an analytic (Fock—Bargmann) carrier space [14] deserves a careful investigation. A
part of this programme consists in studying what persists and what disappears among
those analytic structures after contraction onto the Poincaré group and this is the
content of the present paper.

It seems a general trend of contemporary physics to deal with phase space rather
than with spacetime as a natural arena for describing physical processes. The rea-
son is clear in classical mechanics and in statistical physics since points in the phase
space of a system immediately represent its physical states. Quantization is naturally
and historically based on the phase space Hamiltonian formalism, although physicists
are still Jooking for or making proposals [15] for non-equivocal criteria for defining
quantum observables from their classical counterparts. Difficulties mainly arise in the
spacetime formulation of the Poincaré case: localizability is in conflict with causality
and some inconsistencies arise in theories for high-spin interacting systems [16]. They
might be eluded in SO,(3,2)-quantum mechanics by exploiting at once the regular-
ization due to the curvature and the Fock-Bargmann analytic structure. The latter
emerges from a Kihlerian phase space associated to any massive elementary system.
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Figure 2. {(a) Spectrum of the $Og(1, 1) time-translation generator in the D_( Ep, 3)
representation of SQg(4,1). (8) Spectrum of the SO(2) tme-transiation generator in
the D (Ey,s) representation of SOo(3,2).

Then a quantum theory on phase space [16] with nice attributes like localization can
be developed without any use of intricate spacetime « phase space transformation
(such as Weyl transformation). Curiously enough one recovers the same features as
those existing for the Weyl-Heisenberg group where an clementary system, namely
the harmonic oscillator, has the complex plane as phase space. Setting in a compre-
hensive and consistent way a quantum mechanics on the SO,(3,2)-phase space for
free and interacting systems and examining the contraction limits of the theory is our
eventual goal [17, 18].

The organization is as follows. We begin (section 2) by a short presenta-
tion of the group SO,(3,2) as acting on the anti-de Sitter spacetime. The lan-
guage of complex quaternions appeared to us as the most adapted for describ-
ing the special isomorphism SO,(3,2) = Sp(4,R)/Z,, and the classical domain
DB = S0,(3,2)/S0(3) x SO(2) (section 3). In section 4, we make explicit the
Fock-Bargmann Hilbert space of analytic functions on D% and the corresponding
discrete-series representation. The contraction procedure is then carried out at the

finite_dimencinnal 1aual feactinn SY i~ at the leval of the enacetime aroun and nhace
RONC-CINCNSIONA] JCVEL (SECUOT o), LE. &L 1A Joves O e spaceimng, group and pnase

space, It is finally achieved in section 6 at the level of the generators of the Fock-
Bargmann representation: we show how to recover the Wigner representation at the
cost of losing the original analyticity and square-integrability properties (polarization
conditions). All this is performed in a heuristic way, and we refer to [17, 18] for
mathematical precisions. In [18] geometric quantization of the classical Kéhlerian
structure has been worked out in a comprehensive manner and allows one to solve
the two problems emerging from the present approach. In [18], the non-natural
rescaling used here in equation (6.8) and the singular terms appearing in the con-
traction limit of the SO (3,2) infinitesimal generators of the holomorphic UIR (6.7),
are avoided by performing the contraction at the prequantized level. However the
contraction at the quantum level as it is carried out in the present paper is an illustra-
tion of a non-immediate link between the notion of polarization and the contraction
of representations. This is clearly established since the singular part of the con-
tracted generators are just the Poincaré polarization corresponding to the holomorpic
polarization of SO4(3,2).

Previous work on the anti-de Sitter-Poincaré contraction procedure for the two-
dimensional case can be found in [19].
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2. Quaternionic realization of the anti-de Sitter kinematical group

Anti-de Sitter spacetime is characterized by a constant curvature « > 0. It can be
vizualized as the unit pseudo-sphere in R?+3,
ey =t -l -y = @n

where &, = diag(+1,+1,-1,—-1,-1) and the indices o, f3,... run on the val-
ues {5,0,1,2,3}. We shall reserve the Minkowski indices p,v,... to the subset
{0,1,2,3} and the spatial indices ,7,... to the subset {1,2,3}1.

The one-sheeted hyperboloid (2.1) can be given global coordinates {«*} which
are tensorial with respect to the Minkowski metric 6,, = diag(+1,-1,-1,-1),

Y¥s = Y cos kg

Yo = Ysin xz, (2.2a)
¥; =

where

Y = (x72 + 2%)"/° z; R and _ K Rz < (2.2b)

We refer to Fronsdal [10] for the various geometrical and physical properties of (2.1).

Let us denote by X, the infinitesimal generator associated with the (pseudo)
rotation in the (e, 3) plane. In terms of the 5 x 5 matrix representation of SO,(3,2)
they are given by

(Xag),” = 8a"85y =00y 8s" . (2.3a)
They satisfy the commutation rules
x indi
[Xopr Xl = {6aa -3 two eq.ual in 1ce.s @.3b)
0 al] indices are different.

In order to display the homomorphism between 50,(3,2) and Sp(4,R) [13], we
associate to any S-uple (y®) in R**3 the following 4 x 4 matrix with complex entries,

I(y)=y"T, (2.4a)

where the five matrices I',, are given by
_ (i1, 0, _{ 0, oy
Fo= (02 _ilz) = (_io'l 0,

— 02 —iO’z 02 iaa
= (ia2 0, ) Ly (—10'3 0,

ry=1, (2.4b)

+ The missing index value 4 is taken apart in view of quatemnionic use. See later.
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where the o;s are the usual Pauli matrices. Hence the general expression of I'(y) is

(g, )1 Y )
I'(y) = +/02 .
(y) ( -Y (y_)]-z (2 SG)
where
_ : _{ i iyt -4t
Ye = ys £ iy, and Y= (iyl +? iy ) (2.5b)

We note that det I'(y) = y,v*

Exploiting the well known isomorphism between the algebra M,(C) of 2 x 2
complex matrices and that one of complex quaternions, I'(y) can be written as a
2 x 2 complex quaternionic matrix. Actually this isomorphism associates with Y in
(2.5b), the complex pure-vector quaternion y and to, respectively, (v, )1, and (y_)1,
in (2.5a), the complex scalar quaternions ¥, and y_; this yields

Ty} = (f}; y!i) : (2.6)

General facts about r‘nmnlmr qnnrermnnq are now ontlined [1'7] A gvm?lgx
quaternion z is the sca]ar—vector pair (z*%, z), defined by
z=(Y2)= 2  + 2le, + 2e, + 2Pey (2.7a)
where (2!, 22,23, 2*) € C* and {e,,e,, e,} satisfy the quaternionic algebra
P=-1
.. . (2.78)
ee; = e for (zjk) an even permutation of (123).

In the following we shall sometimes designate z* by (z), (s for scalar), and we shall
also make use of the decomposition of z into real and imaginary parts (which are
real quaternions) i.e. z = x + iy. The complex conjugate, the quaternionic conjugate
and the adjoint of z are respectively defined through

z=(z%,%) 3= (2% -2) and =F=3 (2.8a)
or equivalently
z=x—iy =& 417 and ==z —iy. (2.8b)

The product of two complex quaternions is
22 = (2N ) (2 2 Y= (2 -z 22+ a2 x 2) (29)

where z-z' and z x z’ are the analytic continuations of respectively the dot product

e
nd tha Ace nraduct in B3 The dotomminant nf a ramnlay guaterninon z i defined
ant wid oS5 pioGudt i 7. a0l aaramuingn! Ol 4 COMPiCK quailiiion 7 15 LLuice

by

detz=detz=22=32z= (zl)2 + (22)2+ (33)2 + (z“)2 = |lz||* - ||y|* + 2iz -y
(2.10a)
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where ||z|]> = z - z and *’ is the Euclidian dot product in R%. It is equal to det Z,
where Z is the M,(C) counterpart of z:

44,3 31,1 _ .2
Z=(z +1z2° 1z 23)‘ (2.10b)

izl4 22 24—~z

From (2.10) one derives the expression of the inverse 2~! of z, which exists whenever
det 2 is not zero,

1 %
" detz

(2.11)

In terms of complex quaternionic algebra, elements of Sp(4,R) are 2 x 2 complex
quaternionic matrices of the form [13, 20],

Sp(4,R) D g = (_“B f’) (2.12a)

a

such that the inverse g=! of g is given by

= (0 Wp(0 N _[a

U= )91 o) TR

This means that the complex quaternionic entries have to obey,

21 gt

) ) (2.12)

aa® —bb* =1 and ab= —ba (2.13a)
or equivalently

ata—bb=1 and a*b= —ba. (2.13b)
Sp(4,R) acts on the matrices I'(y) in the following way,

Sp(4,R) 3 g: I'(y) — I'(¥') = gT(1)3" (2.14)
or more explicitly as

Yy =y, deta+ y_detb+ 2(ayb), (2.15q)

y' = -y, ab" + y_ba" + aya’ + byb". (2.15b)
Thus the homomorphim Sp(4,R) — S0,(3,2) is easily deduced from the above

Sp(4,R) 3 g+ R, € 50,(3,2) (2.16a)
gl'(»)§" =T(¥) =T(Ryy). (2.16b)

The matrix R, is realized as the 5 x 5 block matrix,

(50) (123)

G (A B
R, = ) ( ¢ b ) 2.17q)
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where the blocks are given by

A= (Re(deta+ det b) =Im (deta —det b)) 2175)

Im (det a + det b) Re(det a—det b)

'm.l m2 m3 mn mr2 m:a
B = ( 1 2 3 ) Ct = ( 1 n,a) . (2.176)

n n n n n'?

Here the reai pure-vector quaternions m and n (resp. m’ and »') are the reai and
the imaginary parts of the complex pure vector quaternion 2ab (resp. 2be*). The
columns of the 3 x 3 matrix I are made up with the components of three real
pure-vectors,

T summarize, we rewrite £, in the more compact form:

R, = ((U.}.,“/a) (m,n) ) 218
(m',n)  (puy Pay Pay)

where the two complex numbers v, = deta + det b and the seven real pure-vector

ARIIIUEL + LD AL LS LA L TLEAY,

quaternions m,n,m',n' and p;, have to be written as column vectors in R? and R3
respectively. Note also the relationships between the R blocks due to the invariance
of the metric in R2+3,

1 0
RoAgaRy =035  Apy= ( o _13) (2.19a)
A'A-C'C=1,, D'D-B'B=Il, and A'B=C'D (2.195)
or equivalently,

AA*'~BB'=1, DD - CC* =1, and AC* = BD". (2.19¢)

3. A classical domain as anti-de Sitterian phase space
As any simple Lie group, Sp(4,R) admits a Cartan factorization [21],
Sp(4,R) = PK < Sp(4,R) 3 g = pk 3.1

where K = S(U(2) x U(1)) is the maximal compact subgroup,

Kak:(g g) u=e?/%¢ 00K 2n (3.2)

- PR ™. s

with ¢ a real quaternion of modulus 1, ie. an element of SU(2). The Cartan
factorization (3.1) is associated with the existence of the involution [21],

a

9 o(0)=1te1" = (§ ) (3:30)
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such that

olk)=k and a(p)=p L. (3.3b)
This implies

p=(gg*)'/2. 34)
Using the fact that any quaternion o can be written in the polar form

a = (aa*)/?u uu* = utu=1 (3.5

we perform the above-mentioned factorization for the quaternionic representation of
Sp(4,R) presented in (2.12), thus

o= ((aa'_)gﬂu (aa)b1/2ﬁ) _ ((afg-l):_ﬂ (ag;im) (g 3) _ (3.6)

From (2.13b) we obtain (a being always invertible as a consequence of (2.13a) ie.
det a # 0)

(aa*) ' =1-(ba"")"(Ba™") 67
=1 (ba!)(ba"1)"
where ba~! is easily seen to be a pure-vector quaternion and therefore it will be
denoted
z=ba"!. (3.8)

Using (3.6), (3.7) and (3.8), the factor p in (3.1) takes the following z-dependent
form,

25}~ 1/2 _ \—1/2
o= (e ) e

Actually, z is confined to lie in a bounded domain of C3, indeed

(14 22) =(ea”) ! >0 (3.10a)
ie. the M,(C) counterpart Z of z obeys

1,-ZZ% >0. (3.10b)

This means that the spectral radius or the largest eigenvalue of the Hermitian matrix
Z Z* is smaller than 1, and this can be formulated as follows

[f=]® + [|= x 2]| < 1. (3.10¢)

The domain P®) of C3 described by (3.10a) is an irreducible bounded symmetric her-
mitian domain or a classical domain [13, 22, 23]. Its Shilov boundary is diffeomorphic
to S! x5, 8%, where x 5, is the Cartesian product modulo a +1-factor.
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The SO,(3,2) counterpart of the factorization (3.1) is easily found using the
homomorphism (2.16). Thus, the 5 x 5 real matrix x which corresponds to k reads
in the formulation (2.18)

((em,iew) (o,o)t )
X = - - - (3.11)
(030) (Eelﬁ,fegﬁ,ﬁeai)

where @ and £ are those introduced in (3.2). We easily recognize the anti-de Sitterian-
time translation subgroup SO(2} and the 3-space rotation subgroup SO(3) associated
respectively to the parameter # and to the SU(2) quaternion . Along the same way,
the 5 x 5 real matrix IT which corresponds to p reads in the formulation (2.17a)
1/2
H:H(}(}: {(12+XXt) / X
Xt (15 + X X)/? )

where the 2 x 3 matrix X is given, according to the notation in (2.17¢) and (2.18),
-by

_ ol a? ol _ C+C C__t
X—(J@I ;62 ﬁS)_( AT ) (312b)

with

C=a+iﬂ£2:[det(1+z2)]'1/2
o (3.12¢)
=2z[1-2z-2+[z-2/7 ",

Note that TI* = IT whereas x* = x~!; these are the SO,(3, 2) counterparts of (3.3b),
where the Cartan involution takes the form o( R) = (R')~!. Also, the square Toots
that appear in (3.12a) are a simple consequence of (2.19b) and (2.19¢) when A and
D are symmetrical and C = B'. The latter properties are clearly put in evidence

from (2.17b), (2.17¢c) and (2.17d) when a and b are those of (3.9). Actually, A and
D are

14 Redet z Immdet =
_ | [det(1 + z2)]'?  [det(1 + z2)}'/*
A= Immdet 2 1 - Redet 2 (3-13a)
[det(1 + 22)]Y?" [det(1 + z2)]'/*
D=(6(e,—ze;2)6 (e, —ze,2)6  8(e5— zesz)d). (3.13b)
Here 6§ = (1 + zz)~!/% and the property
2(1+22)77 = (14 22)" %z (3.13¢)

has been used in a systematic way in the computations. Inverting (3.12¢) yields
1/2 -1/2
s = c[o el + (24 112 - 1aetr) |
(3.14)
¢

= {(2_'_ ISl + |dEtC])1/2 B (2+ 1E? — |detC|)1/2] i
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Clearly ¢ may run throughout the whole space C?, whereas z is confined to lie in
D),

The two coset spaces Sp(4,R)/S(U(2)x U(1)) and SO4(3,2)/S0(3) x SO(2)

are homogeneous spaces for the Jeft action of Sp(4,R) and SO/(3,2) respectively,
We define the transformations of (3 and C® through the decompositions,

Sp(4,R) 3 g: p(2) — gp(2) = p(g - 2)k (3.15a)
S04(3,2)3 R: II(X) — RI(X) =T(R-X)x. (3.15b)

The result is for the first one a generalized homographic action, namely

—1

Il
I

zl

(3.16a)
} . (3.16M

(S Ly )

gz (az+b)(—5z+
(26" +a”

zh*
z0

o B

\Y T
JAEG

We end this section by displaying some properties of the classical domain D(3), D(®)
is Kahlerian {13, 22, 23] and it has G-invariant metric and G-invariant 2-form with

respect to the analytic diffeomorphism (3.16). Both arise from the Kiihlerian potential
In K{z, 2}, where K(z,z) is the Bergman kernel

K(z, %) = % [det(1 + 22)]"2. 3.17)

The coefficient V is the Euclidian volume in D®

W

.

JDE)

(3.18)

SR

where z = d3zd3y and z = = + iy. Therefore the Bergman kernel yields the
Riemannian metric A;; on D), given by

ds? = —h;;dz'dz’ = ddln K(z,2)
5 8 o 3.19)
= —-——— " [ z : _J.
5.7 55 In K(z,z)d=z'dz
Here, the barred indices correspond to the complex conjugate variables (2% = ') as
usual and the minus sign is necessary since the spatial part §;; of the anti-de Sitterian
metric is negative. The Bergman kernel also yields the closed 2-form

w= —%h;;dz‘ Adzt (3.20)

with dw = 0. Because its symplectic structure, D) will be called phase space for the
double covering Sp(4,R) of the kinematical group SOy(3,2) of anti-de Sitter space.
Finally, we give the explicit form of the invariant measure on D) with respect to
(3.16):

du(z) = %[det(l +z2) % 5. (3.21)
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4. Fock-Bargmann Hilbert space and discrete series representations of Sp(4,R)

We come now to the description of the discrete series representations of Sp(4,R)

(actually of its universal covering Sp(4,R}). Let us first describe the representation
space. We denote by F(Fo:¢) the space of holomorphic (2s + 1)-vector functions

DB 32— f(z) € C*H (a.1)

that are square integrable with respect to the bilinear form

(fla fz)(Em,)=N(Eu»3)'[o(s)(f1(z))+Ds( - )

14+ 2%

x f,(z) [det(1 4 22)]%t7% 1, @.2)
D* denotes here the irreducible (2s4 1) x (254 1)-matrix representation of SU(2),

holomorphically extended to AM,(C). The constant A'{ £, s} is chosen in such a way
that the particular function f(z) = (f(2)),-,¢,¢, defined by

(f(z)) =6,

v q - 8q

—
-~
(%)

o

have norm one. Explicitly,

N(E,,s) = (%)S(E +s—~—)(E s 1)(E —s5—2). (44)

Therefore, the Hilbert space F (Eo»#) js pon-trivial if and only if E, > s + 2. Modi-
fications of the form are required in order to relax this condition until reaching the
unitarity lowest limits [24]:

Ey=s5+4+1 s21 massless
Ey=1 s=1/2 singleton Di 4.5)
E,=1/2 s=0 singleton Rac.

Here the correct definition of the scalar product involves the lower dimensional
manifold S? embedded in the Shilov boundary S x §? (See for instance Onofri
[25] for a definition of F(Fe»¢=0) when 1 < E; < 2). The positive parameter E is
considered as a minimal energy for reasons that will soon appear.

We now deiine the representation opéraior T(Foe) ‘A9
(T(Eo,s)(g)f)(z) = [det(—Ez‘+ ﬁ)]—Eu-s Da(zb"‘ + a-)f(g-l . z) (46)

for f € F(Eo:®) and

-1 _ a b

The representatives of the Lie algebra elements are then given by the unitary opera-
tors

Laﬂz M&ﬂ+sa,@ (4.701)



Phase spaces for quantum elementary systems 1197

where M, ; is the orbital part and S, is the spin part. They satisfy the following
commutation rules,

[Laﬁ’ L‘rp] = i(‘sa'y[’ﬁp + éﬂPLav - 60!.0‘5»87 - 5ﬁ"rLap)' {4.7b)

Explicitly, we obtain for the orbital part

Mg=2 -V, + E, v, = (5%,%,33;3-) (4.8a)
M =i (z";-;T —2J %) (4.8b)

=i (LT; azi -2 (Ey+z- v,)) (4.8¢)
My = — (l——%g—; +2(Ey+z- vz)) . (4.8d)

The spin parts are given in the appendix. It can be checked that the second-order
Casimir operator

Cy = § Lo L™ (4.9a)
takes on the value
C, = [E( Ey ~3) + s{s+ 1)]1d (4.9b)

identically on F(Fo:?). Moreover, Ly, = My, is the ladder operator or anti-de Sit-
terian energy operator whose eigenvalues on the representation space F(Fo*) are
Ey.Ey+1,...,E;+n,.... We are here in presence of lowest-weight representa-
tions. The lowest-weight state f,(z) is defined by (4.3).

The Fock-Bargmann spaces F(Fe:%) are reproducing-kernel spaces. The (2s +
1) x (25 + 1) matrix-valued reproducing-kernel is given by

K(z,2') = [det(1 4+ 22")]"°7° D*(1 + z#'). (4.10)
We recall its reproducing property
F(2) = (K420, ) gy 4.11)

An expansion of K allows onc to find an orthonormal basis for F¢Fe).

5. Anti-de Sitter~Poincaré contraction: geometrical aspects

In anti-de Sitterian physics, there exists an universal length, namely %1, to which any
other length-like physical quantity has to be compared {e.g. the global coordinates,
(2°, ') in (2.2)). Nevertheless, as long as we deal with a non-zero curvature, all the
parameters of the kinematical transformations of anti-de Sitter space are (pseudo-)
angles associated with (pseudo-) rotations of the simple group SO,(3,2). But if we

have in mind the flatland limit x — O or if we examine things from what we believe
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to be our natural arena, namely the Minkowski space, some of those parameters
are length-like. Actually, the four ones which are almost the components of a four-
vector translation in Poincaré kinematics are length-like. They correspond to the four
S0,(3,2) generators X, given in (2.3), and they are introduced after rescaling the
corresponding dimensionless pseudo-angles ©°%#,

g* = k71O%, (5.1)

The remnant parameters do not need such a rescaling since they correspond to the
unmodified Lorentz subgroup SO4(3,1).

If we examine the behaviour at x ~ 0 of the y-coordinates (2.2} for the hyper-
boloid (2.1),

Y = k7 ¢.2)
Yy = Tp + o(k) (5.3)
y=r 6]

we see clearly how to rescale an arbitrary SO,(3,2)-action in order to give it a
physical meaning at the limit x — 0. Since only the first component (5.2) becomes
singular, this rescaling corresponds to the similitude matrix [2}:

R €504(3,2) — A(k)RA (k) {5.5)

where
k 0

A(r) = (0 14) . {5.6)
Any SO(3,2)-clement near the identity can be factorized as follows:

R= [Hexp 95#X5M] L (5.7)

I

where £ i8 an element of the orthochronous Lorentz subgroup 3O,(3,1),

c=(1 0 A €50,(3,1 .8)

={o A 0(3,1). .

The latter is left-invariant under (5.5) whereas the (5 — u) pseudo-rotation becomes
in the limit

[A(K') [CXPGS;LXSV.] A-l(’c)]a A — 50'6 + 65‘96&“‘1#' (59)

The final result on R is the five-dimensional matrix representation of the Poincaré
group

(g,A)= (; K) : (5.10)
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We now turn to the zero-curvature limit of the anti-de Sitter phase space
80,(3,2)/80(3) x SO(2). Because we have in mind a Poincaré phase space
parametrized by pairs (q,p) we adopt the four-momentum description for a Lorentz
boost with velocity v:

Po E_ \
r | me me PN
L,= ki)- - ppt ) {5.11)
me 2 me(py + me)
where p/p, = —v/c, and the four-vector p = (p,,p) belongs to the forward mass
hyperboloid,
Vi ={p=(pu:p) €R?, py >0, p*p, = m?c?}. (5.12)

Then we examine the contraction limit for the rescaled section matrix IT(X) given
by equations (3.12) and (5.5). It is quite convenient to make explicit its dependence
on the real 3-vectors o and 8 (sce (3.12)):

2
Pt v
9 3~ a* \
&3 FA Y
I(X)={ v p’-up gt (5.13)
2p 2p
a B (Li+ X X)1?
where the scalar functions g, v, p are defined by
(e, B) = [lalf® — |81 (5.14a)
v(a,B)=2a-p3 (5.14b)

2 2 2 2 1/211/2
paB) = [2+ llall? + JBIF +2(1 + [l + 1817 + o x 81) 2] 7. 140

Since the limit of A(x)II{X)A~(x) when x — 0 has the form (5.10), the real part
a of { = o + i must have the asymptotic behaviour

a = kg +o(x?). (5.15)

On the other hand 3 has no reason to vanish at the flat-space limit. Therefore we
put

B = % + o(x) (5.16)

ie. we define the parameter p/mc as the zeroth-order term of the expansion of 3 in
powers of «. It follows for the rescaled matrix A(RMI(X)A~Y (k) the limit matrix
at k =0;

1 01)(4\

(5.17)



1200 R Balbinot et al

Here, we have adopted the notations of [19] to designate the bundle section:
8,:T,=P1(3,1)/S0(3) x T — P1(3,1) (5.18)

where T = R is the subgroup of time translations. Therefore, the contraction onto
the Poincaré group selects a rather remarkable section for the Poincaré phase space,

Poincaré j(Spatial Rotations) x (Time Translations). (5.19)
Note that (5.19) is literally the phase space for massive scalar elementary systems,
whereas non-zero-spin systems have phase space,

PL(3,1)/S0(2)x T (5.20)

which is just the product of T with the coset SO(3)/S0(2) = S2. For our present
purpose we need not deal with (5.20). The constraint on the (g, g,p) variables,
q = 4P

== 5.21
— (5.21)

has very interesting physical implications, previously discussed in [19] and [26]. Let
us quote here two of them picked among a set of characteristic ones. First, 3, is the
unique section that obeys the equation,

8,(q,2)]"" = B,(—q,—p)- (5.22)

Secondly, such a section is valid as well for the right coset
T, =S0(3)x T |PL(3,1). (5.23)
The left and right cosets have the same invariant measure

dS
du,(g,p) = Pg=L. (5:24)
Po
One could say that (5.22) and (5.24) are vestiges of a lost paradise: the classical
domain D®) and its Kihlerian attributes. Property (5.22) also exists for the anti-
de Sitterian—Cartan sections (3.9} and (3.12),

p:Sp(4,R)/3(U(2) x U(1)) — Sp(4,R) (5.25)

T :S0,(3,2)/SO(3) x SO(2) — S0(3,2) (5.26)
namely

(p())” = p(~2) (5.27)

(XN =H(-X). - (5-28)

Th unAdarctand tha Ariain nf

I8 AN wa nwea tha
AV WiluWwIOWALID LW Ullslll i \-}-ﬁ v

{ e )V firet_nrder naramatrizatinn
-'}, W W% L% \l’ ] ‘_’} LRI LTV rul“lll\d\-lullvll

of the coset (5.26) afforded by equations (5.15) and (5.16), or alternatively from
equation (3.14),

mexq + ip

D(3)3z= W =
T+ 1y Po + me

+ o(k?). (5.29)
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The fact that the imaginary part y has no first-order expansion term will be given an

a posieriori justification in section 7. Note that it could be inferred from the global
(g, p)-coordinatization of D(3),

_ [mesinh(xg) +i(4- p)(cosh(xg) - 1)] 4 +ip

z
[(pq cosh(kq) + me)? — (G- p)? Si“hz("qnl/z (5.30)
G= % and q=|lqli

in agreement with the Sp(4,R)-Cartan factorization and its Poincaré limit. The
infinitesimal transformation corresponding to equation (5.29) reads

/ mck . mergpt \
de\ _ | py+mc 3 _po(po + mec)? dg 9
(dy) = . 1 ) op' dp +o(k*). (5.31)

po+ me? - Po(po + me)?

The leading term of the Jacobian is m*c?*x3/p,(p, + mc)®. Other approximation
formulae are useful:

... _emc . 2mcek 2
1+zz—po+mc 1(p0+mc)2qxp+o(fc ) {(5.32)
. 4m3c? 2
det(l + zz) = W + O(K: ) (533)

It follows the leading term for the invariant volume element (3.21):

3x?
B8r3m2el

d3
dp(z) = d3q-p—2 o< du,(g,p). (5.34)
0

The approximate Kiihlerian metric and 2-form are also interesting,

3
ds® = T omid [(dpo)? — |tdpl[*] + o(x?) (5.35)
3x ; ; p-dgAp-dp g-dpAp-dp
= - dg' Adp® -~ + 3 . 5.36
2me l:? i P PU(PU + mc) PU(PU + mc) :| ( )

Let us say more about the invariance of the above three expressions under the
Poincaré action. An arbitrary clement (g, A) € ’P]_(.‘}, 1) may be factorized either as

(g,A)=(q,, L,) ((qo— L 0) ,R,\) (5.37)

p0+mc’

according to the left coset ') or as

@n = ({52 0) R ) (0l p) 538
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according to I'. In the former case, A = L,R,, R, € S0(3), and
7,8 (q" - p/(py + mc),q’) with
g =1L_,q
U 17 S 3%
me(p, + mc) e

In the latter case, g” is defined by

"o_ q-p t
q, = (—_'Po T me’ RAq) (5.40)

and p” = R p. Hence, the section (5.18) is valid for both I') and " and elements of
both cosets can be parametrized by (g,p) € RS according to §,. The left and right
actions of ’P}_(3, 1) on T, and [, respectively, are similar. On [} the action is

(¢,p)— (d',P') = (a,A)(q,p) (5.41)
where
"= R.R — L — 5.42
q A R:\k,pq + e (5.42)
P = Ap. (5.43)

Here, the rotation R, ,. appears in the Cartan decomposition of the product of two
boosts.

LthJ S LL_J‘Rk‘kI- (5-44)

On the other hand, the action of P}(3,1) on I', is given by

q" = R}, RL_:'.;S,k(q + LPG) {3.46)
P’ = ST—]E; (5.47)

where S is the spatial inversion. The invariance of (5.24), (5.35) and (5.36) holds by
reference to the above left and right actions.

6. Anti-de Sitter—Poincaré contraction: cperatorial aspects

We now turn 1o the task of contracting the representation T(Eass) given in (4.6),

at the level of its infinitesimal generators (4.7) and (4.8). At this end, we begin by
rescaling & la Indni-—Wigner [2], the generators which are not Lorentz:

[

Lgy = rilg Es:’

=L,  and Ly = Lo;e (6.1)

EK.L‘“ ij

ij
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Formally, the new commutation rules become the Poincaré ones when « = 0. How-
ever things are not so simple, since a radical change can occur for the infinitesimal
operators originally acting on the Bargmann-Hilbert space (¥°:*). One should study
carefully what happens, for the spaces of analytic functions and the operator domains,
at the topological and functional analysis levels. Such a mathematical development
is presented elsewhere [18]. Here we describe rather heuristically the contraction
procedure in the spirit of [19], and we deal with the scalar case only. The non-zero
spin case is considered in the appendix.

Taking into account the parametrization (5.30), the asymptotic behaviour ( « ~ 0)
of the differential operators V_ and v, is the following:

1p,+m P
Va: ~ ;—m-—vq - REOP - Vp {62(1.)
Vy~ (o +m)V, + 2 (q-V, 4+p-V,). (6.25)

Before writing out the explicit form of the infinitesimal generators in the limit
& — 0, we would like to add some comments. The representation parameter E, is a
pure number. The contraction procedure consists in taking the limits £, — oo and
x — 0, while keeping the product « E finite and proportional to m, the test mass of
the limiting Poincaré elementary system. However, the three (fundamental) constants
k, m and c appearing in the formalism are not enough to build up pure numbers. We
should be aware that the Fock-Bargmann-Hilbert spaces are dealt within a quantum
context, characterized by action-dimensioned physical quantities of order 4. Now, the
unique dimensionless combination of these four constants is the parameter

g= I 6.3)

mc

and the contraction condition & E; & m can be replaced by
E, = ¢, 6.4)

Actually we might consider the quantum antj-de Sitter parameter E; as a meromor-
phic function of £ with simple pole £ = 0,

Ey= E(§)=¢7" 43 et (6.5)
nzo
where the €y,e,,...,e,,... are purec numbers. So considering (6.2) and (6.5), we

are led to the following asymptotic behaviour for the infinitesimal generators of (4.8):

Mso—12 "V, +—+0(f) (6.6a)
—_ i 8 p' me i

et e e .V 6.6b
M5| 23q| (p0+mc) ( .ﬁ +21 - >+0(§) ( )

— h o a
= ¢-1 —p.— ] =
Ty = ¢ s (P o)
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i ] i) 8 o
2 Qg"b_&’_qi’é?'*‘pgw—pj_a“;f + o(¢) (6.6¢)
o5 sy N . Py O ) P mept
o et - e _n. bt SN
o = 671 2 (-1 5 = sy Vs oo ¥ 9
i 8 i pq a N m2c2q‘ f1+ ik V\
T 2P055 T 3 (po + mo) 07 ﬁ(pu+m<:)& 2mict .,)
. p*
—leg———— + o(&). 6.6d
1 0p0+mc €3, ( )

In the limit £ = 0, singular terms appear in the expression of the generators of the

subgroup SO(3.1), namely M,; and M. We shall need a specific notation for them,
whereas we adopt Poincaré-like notations for the remnant terms;

ﬁﬁu = ‘E‘u + o(£) (6.7a)
Mg = P, +o(£) (6.75)
M =£_1;_,‘;“Ef-',‘kik + ;% Jy + o(£) (6.7¢)
R

My = 67— {1, + K, + (&) (6.7d)

One should first note that the operatos T("- will be Hermitian only if e, = 0. On
the other hand, the operators F,, P;,J; and K, (i = 1,2,3), exactly obey the usual

Y

Poincaré commutation rules if we make the rescaling [19],

13 9 1 8 3]
E—ahq_'H-éE and E‘B—I)THa_p‘l. (6.8)

Such a seemingly artificial rescaling can be shown to be unnecessary if the contraction
procedure is performed in more rigorous mathematical settings [18]; we shall come
back to this point in section 7. Finally, by multiplying each one of the latter generators
by F, one obtains the Poincaré generators undey their definitive form,

k
P=i—p- -V, +me (6.9a)
mce
.8 .k p* mep®

P=ifs - f—--———p ¥ _ o ——— 6.95

i=t dq! ]mcpo-k-mc T pyt+ me (6.96)

m_lpeit(, 2 9 4 K
2,2 i :

K= ifpy2 psp P @ 0 mictd’ [, i o (6.94)

' U8pt T T pe+medg T py+ me \ mic? 1)

The remaining terms in (6.7¢) and (6.7d) become infinite at the limit £ — 0. We
remove these singularities by imposing on the space of functions on the (q,p) phase
space, the following constraints:

{(E‘D)(q,p) =0 (6.10a)

YHEP) o ()(g,p) = 0 (6.100)
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where
. B . O
2" = —l—nzf"jkp‘?ga (6.11(1)
. h a . & Pt p*
n,=i—yp;—-i———p. — —_— X
‘ lmcpoaq' lmcp0+mcp A\ mcp0+mc (6.115)

Equations (6.10) are typical polarization conditions, usually encountred in geometric
quantization [18, 27]. For this reason, we shall call £ and IT polarization operators.

Besides the familiar Poincaré commutation rules, we have those involving the
polarization operators,

(=, 5] =[0,0;] = [2,M;] =0 (6.12q)
[Z,P]=[0,P]=0 (6.12b)
[J:, E;] = ikie;; ¥ 5, [J:,11;] = ihe;; * 1T, (6.12¢)
[K;,T;] = ike;; M1, [K;, ;] =ihe;; %, (6.12d)

Therefore the generators J, K, F,, P, %
that is the semi-direct sum nf 5n(1 1} p__r_l

(LT S it S LA VL O LU vy =

and II form a 16-dimensional Lie algebra
a 10-dimensional Abelian aloshra

- adansas g LRLWT o~ R Sy

{7,K}e {P,, P,%,I0}. (6.13)

This extended Poincaré algebra has a second-order invariant (Casimir) operator,
which is identically equal 10 m?2c?,

I, = P, P* — ILII' + 5,2 = m?cId. (6.14)

The functional space at £ = 0 limit results from the polarization conditions (6.10);
therefore, on this space, I, becomes the Poincaré Casimir operator P, P* and (6.14)
becomes the Klein-Gordon equation,

(6.15)

(p Pl 2B (a Y =10
(1 mc’)®{q,p) =0

for ®{q,p) given by (6.10). Actually the two conditions (6.10a) and (6.10b) reduce
to one by noting that,

(TI®)(q,p) = 0 == (=@)(q,p) = 0. (6.16)

This is directly deduced from the explicit formulae of £; and II; given in (6.11).

One can see, by solving the polarization condition (6.10b), that the carrier space
of functions @ of the representation is no longer a subspace of L? (R®,d%qd®p/p,);
in other words we lose the square integrability on the entire phase space, when ¢
reaches its limiting value 0. In fact, when solving (6.106) one obtains

4 hY
— H I - 9 F
®(q,p) = d(p)exp(ihelp,) ¢, = (po e ,q) 6.17)

where g, is the Cartan—anti-de Sitterian section (5.17). The energy and momentum
operators, P, and P, are diagonal on the space of such functions (6.17). On the other
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hand, the exponential factor in (6.17) is transparent with respect to the Lorentz action.
Thus the action of the Poincaré operators (6.9) passes through this modulus-one factor
to become the well known infinitesimal Wigner—Poincaré action on functions ¢(p)
defined on the mass-shell [5];

(Py9} () = pod(p) (6.18a)

K?ﬁb) (P} = P(p) (6.186)
A ]

(Jid)(p) = —i—2—e'1’= (p, 35F " PE 55 p:) é(p) (6.18¢)

(K;9) (p) = ihp, 3 p,- #(p). (6.18d)

Thus the Wigner representation on L2 (V},d3p/p,) is recovered by just imposing
the functions ¢(p) of (6.17) be square integrable with respect to d3p/p,,.

7. Discussion

In section S the first-order expansion of z = « + iy € D® exhibits no first-order
term in the asymptotic form of y (see (5.29)). That was justified from the global
coordinatization of P® given in (5.30). Asymptotically, the latter provides exactly
(5.29). Had we chosen another global parametrization of D), which in its asymptotic
form can be written in general as

— MK g 2
> = o + +o(x?) (7.1a)
Y= + — + 1 f(q,p) + o(x) (7.1b)

where f is an arbitrary vector function analytic in ¢ and p, the infinitesimal generators

6 &Y winuld annira avtra tarme inunluving £ and itc Aarivativac Tt ie than ancy +n chouae
\UIU} WU u‘iuu\l WAL A Ul LD ulVUIVulB J Allud 1w UWwLIVALIYWD. 1L L Livil WBJ W ODLIVYY

that their non-singular (and rescaled) parts as in (6.7}, (6.8} and (6.9), obey the usual
Poincaré commutation rules only if f = 0. So the parametrization must be such that
no term linear in « appears in the asymptotic expansion of y.

The procedure of contraction of the discrete series performed in this work presents
some problems; these are essentially two: the non-natural rescaling used in (6.8) and
the Qmonlar terms nnneanno in the contraction of the infinitesimal generators. The

...........................................

mterpretatlon of the latter as polarization operators draws one naturally, in order to
explain the origin of the above-mentioned problems, to put the present work into the
framework of geometric quantization. This has been done in [18]. There, no such
problems appear and an explanation to the present ones is given. Actually it is shown
that they have the same origin. Singular terms appear naturally when one contracts
the holomorphic part of the prequantized representation, since it carries implicitly
a polarization condition, i.e. the holomorphic condition. Then those singular terms
appear as the Poincaré counterparts of the anti-de Sitterian holomorphic condition.
In [18] the contraction is performed at the prequantized level, ie. taking into account
the holomorphic and the anti-holomorphic parts, that solves the problem of singular
terms and that of the rescaling since no holomorphic condition is considered and
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each part contributes by one half in the contracted generators. Then the construction
is completed by adding to the resulting Poincaré generators the x — 0 limit of the
anti-de Sitter polarization (the holomorphic condition), which is interpreted as the
Poincaré polarization. One thus obtains the Poincaré quantum elementary system.

Appendix

In this appendix we give the complete form of equations (4.7) and (4.8), (6.6), (6.9)
and (6.18) by displaying their spin parts. We start by equations (4.7) and (4.8). For
the calculations we make use essentially of equation (4.6).

First let vs introduce the (2s + 1) x (2s + 1) matrices S;,S, and S; given
respectively by

(Sl)'mm’ = %\/(S + m)(s -m+ 1) ém,m’-l-l + ;2'\/(3 - m)(s +m+ 1) 6m,m'—1

(A.1)
(Sz)mm’ = %\/(3 + m)(s -m+ 1) Em,m‘-l-] - ‘211“\/(5 - m)(s +m+ 1) 6m,m’—1

(A.2)
(83)mmr = mbpy (A.3)

for m and m’ integers such —s § m, m’ £ s; they realize the spin s representation
of the Lie algebra of SU(2), i.e.

[5:,8;] = —ie;*s, i,j,ke{1,2,3). (A.4)

In terms of these matrices the complete generators of (4.7) are now displayed,

Lyy=(z-V,+ Ep)ld v.,= \ail ; 5—?;5, @—25) (A.5)
Ly,=—i 215‘2—2 - zza;:l) Id - S, (A.6a)
Lyg= i (225% - z3£,_;> -8, (A.6b)
Ly = ~i (23(‘98;1" - 21;;3‘) Id - &, (A.6c)
L51=i(1—.:zi%—zl(Eo+s+z-Vz)) Id + 228, — %8, (A.70)
L52=i(_1i2f—'-i-£-5—22(50+s+z-v2)) Id - '8, + 278, (A.7b)

L53=i(1—.*-€4:—i~éz—§ - z3(E0+s+z-Vz)) Id + z'8, - 2%8, (A.7¢e)



1208 R Balbinot et al

Ly =~ (}_._2.‘?_2: 9 + 2! (Eg+s+2-V )) Id—iz283+iz382 (A.8a)
1—-z-2z & 7 +.3

Ly, =— 557 +z2(Ey+s+2z-V,)) Id+i iz'8; - 1235, (A.8b)
l—z-2 0 3 .1 . o

Lyz= - —-')—m-+z(Eu+3+z-Vz) Id—iz'8, +iz°8, (A.8¢c)

where Id is the (25 4+ 1) x (2s + 1) identity matrix.

Since the spin contributions are linear in the components of z, no new singular
terms will appear when carrying out the contraction. Thus the polarization operators
are unchanged, they only become matrix-valued operators. This is a mere conse-
quence of equation (5.29). Moreover, both Ly, and the L,,s are free from new
x-dependent terms, so their contraction is straightforward. More precisely, L, has
no spin part and thus its contraction will provide the same result as in section 6,
namely equation (6.9a). For the L,;s the spin parts are just the (x-independent)
spin-s matrix representatives of the Lie algebra of SU(2). The contraction will not
affect these parts. The contracted rotation generators are then

IO =g 488, i€{1,2,3} (A.10)

the J;s and the S;s being given respectively in (6.9c) and (A.1-A.4) and they are the

components of the 3-vectors J and S respectively, with J, = —J% and 8, = —§*.
The contractions of the L.;s and Lj;s need simple calculations. We start by
recalling from (5.29) the leading term in the expansion of z,

—;_ P
z—lp0+mc+o(ﬁ,). (A1D)

It is then easy to see that the leading term of Es.’ = kLg; is exactly that of HS,-
given in (6.6b). The contracted generators are then exactly those found in (6.9b).
Finally for the Lg;s a direct calculation based on (A.11) and (A.8) gives the spin-s
counterpart of (6.6d),

ANy i 28, _ p? S

Loy = My, + m(p S3—p°S) + 8 me +o(§) (A12a)

Fop = Moy — (%S, — p'S5) +is—2— o(6)  (A120)
02 ot e 1 3 ot

~ — 1 p

LUS = MOS + m(Plsz - ple) + i lS + + O(E) (A12c)

the M ;s being given in (6.6d). After contraction they become the Poincaré generators
of boosts with spin s. In a more compact form, we have

-
S

K® = K + ihs—2 p2x S)

po + mec Po + me

(A.13)
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where the components of K are given in (6.9d).

Since the polarization operators are unchanged when considering spin, the unique
medification in (6.17) consists in replacing the scalar functions by (2s 4 1)-vector
valued functions, (see for instance equation (4.1)). Moreover, the spin counterparts
of equations (6.18a—d) are easy to write down according to the latter observation and
to the equations (A.10) and (A.13). We then obtain the Wigner representation of the
Poincaré group with arbitrary spin.

References

{1] Bacry H and Lévy-Leblond J M 1968 Possible kinematics S Math. Phys. 9 1605
21 Indnii B and Wigner E P 1953 On the contraction of grouns and their representations Proc. Nadl
Acad. Sci USA 39 510
[3] Inéni E 1964 Contraction of Lie groups and their representations Group Theoretical Concepis and
Methods in Elementary FParticle Physics ed F Giirsey (New York: Gordon and Breach) p 364
[4] Bayen F, Rato M, Fronsdal C, Lichnerowicz A and Sternheimer D 1978 Deformation theory and
quantization: 1. Deformation of symplectic structures Ann. Phys. 111 61; II. Physical applications
Ann. Phys. 111 111
{5] Wigner E P 1939 On unitary representations of the inhomogeneous Lorentz group Amm Math.
40 149
[6] Inénii E and Wigner E P 1952 Representation of the Galilei group Nuovo Cimento 9 705
[71 Levy-Leblond J M 1963 Galilei group and nonrelativistic quantum mechanics . Math. Phys. 4 776;
1971 Galilei group and Galilean invariance Group Theory and its Applications vol 11, ed M Loebl
(New York: Academic) p 221
[8] Voisin J 1965 On some unitary representations of the Galilei group, 1. Irreducible representations
J. Math. Phys. 6 1519; 11. Two particle systems J. Math. Phys. 6 1822
[9] Girsey F and Lee T D 1963 Spin 1/2 wave equation in de Sitter space Proc. Natl Acad Sci USA
40 179
Giirsey F 1964 Introduction 1o the de Sitter group Group Theoretical Concepts and Methods in
Elementary Particle Physics ed F Giirsey (New York: Gordon and Breach) p 365
[10} Fronsdal C 1965 Eiementary particles in a curved space Rev Mod Phys. 37 221; 1974 Elementary
particles in a curved space II Phys. Rev D 10 589
Castell L 1969 Goldstone particles in de Sitter Space Nuove Cimento A 61 585
Evans N T 1967 Discrete series for the universal covering group of the 3+2 de Sitter Group J. Marh.
Phys. 8
[11] Dooley A H and Rice J W 1985 On contractions of semi-simple Lie groups Trans. Am. Math. Soc.
289 185
Primet G 1983 Contractions de groupes de Lie semi-simples sur le groupe de Poincaré généralisé
Pub. Depr. Math. Université Lyon I 6/D
[12] Mizony M 1987 Semi-groupes de Lie et fonctions de Jacobi de dewxiéme espéce Thése d'Etat
Université de Lyon |
Helgason 1962 Differential Geornetry and Symmnetric Spaces (New York: Academic)
Knapp A 1986 Representation Theory of Semisimple Groups (Princeton, NI: Princeton University
Press
[15] Carincn?a I F, Gracia-Bondia J M and Varilly I C 1990 Relativistic quantum mechanics in the Moyal
representation J. Phys. A: Math. Gen. 23 901 and references therein
[16] Ali § T 1985 Stochastic localization, quantum mechanics on phase space and quantum spacetime
Riv. Nuowo Cimento 8 (11) i
[17] Gazeau J P and Hussin V 1992 Poincaré contraction of de Sitter Fock-Bargmann structure I Phys,
A: Math. Gen. 25 at press
[18] De Biévre S and El Gradechi M A 1992 Quantum mechanics and coherent states on the anti-de
Sitter spacetime and their Poincaré contraction Ann. Inst. H Poincaré at press
El Gradechi M A 1992 Thése de Doctarar Université Paris 7
{19] Ali S T Antoine J P and Gazeau J P 1990 De Sitter to Poincaré contraction and relativistic coherent
states Anre. Inst. H. Poincaré 5 83



1210 R Balbinot et al

[20] Gazeau J P 1989 Complex geometry and quantum elementary systems Lecture Notes Louvain-la-
Neuve 83-90

[2I] Hermann R 1966 Lie Groups for Physicists (New York: Benjamin)

[22) Hua L K 1963 Harmonic analysis of functions of several complex variables in the classical domains
Transl, Math. Mon. € (Providence, RI: American Mathematical Society)

[23] Borel A 1952 Les espaces hermitiens symétriques Séminaire Bourbaki

[24] Dirac P A M 1963 A remarkable representation of the 3+2 de Sitter group J Math. Phys. 4 901

Flato M and Fronsdal C 1978 One massless particle equals two Dirac singletons Lett. Math. Phys.

2421

[25] Onofri E 1976 Dynamical quantization of the Kepler manifold J Math. Phys. 17 401

[26]) Ali S T Antoine J P and Gazeau J P 1991 Square integrability of group representation on
homogeneous spaces: [. Reproducing triples and frames; II. Generalized square integrability and
equivalent families of coherent states Anp. frst. H Poincaré 55 B9, 857

[27] Kostant B 1970 Quantization and Unitary Representations (Lecture Notes in Mathematics 170) (Berlin:
Springer) p 87



